Previous |  Up |  Next

Article

Keywords:
$C^{1{},1}$–function; ${\ell }$–stable function; generalized second-order directional derivative; Dini derivative; vector optimization
Summary:
In the paper we present second-order necessary conditions for constrained vector optimization problems in infinite-dimensional spaces. In this way we generalize some corresponding results obtained earlier.
References:
[1] Bednařík, D, Berková, A: On some properties of l-stable functions. In: Proc.14th WSEAS International Conference on Mathematical Methods, Comput. Techniques and Intelligent Systems (A. J. Viamonte, ed.), Porto 2012, pp. 52-55.
[2] Bednařík, D., Pastor, K.: Elimination of strict convergence in optimization. SIAM J. Control Optim. 43 (2004), 1063-1077. DOI 10.1137/s0363012903424174 | MR 2114389 | Zbl 1089.49023
[3] Bednařík, D., Pastor, K.: On second-order conditions in unconstrained optimization. Math. Programming, Ser. A 113 (2008), 283-298. DOI 10.1007/s10107-007-0094-8 | MR 2375484 | Zbl 1211.90276
[4] Bednařík, D., Pastor, K.: Differentiability properties of functions that are ${\ell}$-stable at a point. Nonlinear Analysis 69 (2008), 3128-3135. DOI 10.1016/j.na.2007.09.006 | MR 2452120 | Zbl 1146.49017
[5] Bednařík, D., Pastor, K.: $\ell-$stable functions are continuous. Nonlinear Analysis 70 (2009), 2317-2324. DOI 10.1016/j.na.2008.03.011 | MR 2498316 | Zbl 1158.49022
[6] Bednařík, D., Pastor, K.: A note on second-order optimality conditions. Nonlinear Analysis 71 (2009), 1964-1969. DOI 10.1016/j.na.2009.01.035 | MR 2524410
[7] Bednařík, D., Pastor, K.: On l-stable mappings with values in infinite dimensional Banach spaces. Nonlinear Analysis 72 (2010), 1198-1209. DOI 10.1016/j.na.2009.08.004 | MR 2577520
[8] Bednařík, D., Pastor, K.: On second-order condition in constrained vector optimization. Nonlinear Analysis 74 (2011), 1372-1382. DOI 10.1016/j.na.2010.10.009 | MR 2746815
[9] Cominetti, R., Correa, R.: A generalized second-order derivative in nonsmooth optimization. SIAM J. Control Optim. 28 (1990), 789-809. DOI 10.1137/0328045 | MR 1051624 | Zbl 0714.49020
[10] Chan, W. L., Huang, L. R., Ng, K. F.: On generalized second-order derivatives and Taylor expansions in nonsmooth optimization. SIAM J. Control Optim. 32 (1994), 591-611. DOI 10.1137/s0363012992227423 | MR 1269984 | Zbl 0801.49016
[11] Dvorská, M., Pastor, K.: On comparison of $\ell-$stable vector optimization results. Mathematica Slovaca 64 (2014), 1-18. DOI 10.2478/s12175-014-0252-4 | MR 3255866
[12] Dvorská, M., Pastor, K.: Generalization of $C^{1,1}$ property in infinite dimension. Acta Mathematica Vietnamica, accepted. DOI 10.1007/s40306-015-0129-9
[13] Fabian, M, Hájek, P., Habala, P., Santalucía, V. M., Pelant, J., Zizler, V.: Functional Analysis and Infinite-Dimensional Geometry. Springer-Verlag, New York 2001. DOI 10.1007/978-1-4757-3480-5 | MR 1831176 | Zbl 0981.46001
[14] Ginchev, I.: On scalar and vector $\ell-$stable functions. Nonlinear Analysis 74 (2011), 182-194. DOI 10.1016/j.na.2010.08.032 | MR 2734988 | Zbl 1205.26007
[15] Ginchev, I., Guerraggio, A.: Second-order conditions for constrained vector optimization problems with ${\ell}$-stable data. Optimization 60 (2011), 179-199. DOI 10.1080/02331930903578718 | MR 2772143 | Zbl 1237.90221
[16] Ginchev, I., Guerraggio, A., Rocca, M.: From scalar to vector optimization. Applications of Mathematics 51 (2006), 5-36. DOI 10.1007/s10492-006-0002-1 | MR 2197320 | Zbl 1164.90399
[17] Ginchev, I., Guerraggio, A., Rocca, M.: Second order conditions for $C^{1,1}$ constrained vector optimization. Math. Programming, Ser. B 104 (2005), 389-405. DOI 10.1007/s10107-005-0621-4 | MR 2179243
[18] Ginchev, I., Guerraggio, A., Rocca, M.: First order conditions for $C^{0,1}$ constrained vector optimization. In: Variational Analysis and Applications (F. Gianessi, A. Maugeri, ed.), Kluwer Academic, London 2005, pp. 427-450. DOI 10.1007/0-387-24276-7_27 | MR 2159985 | Zbl 1148.90011
[19] Guerraggio, A., Luc, D. T.: Optimality conditions for $C^{1,1}$ vector optimization problems. J. Optim. Theory Appl. 109 (2001), 615-629. DOI 10.1023/a:1017519922669 | MR 1835076 | Zbl 1038.49027
[20] Guerraggio, A., Luc, D. T.: Optimality conditions for $C^{1,1}$ constrained multiobjective problems. J. Optim. Theory Appl. 116 (2003), 117-129. DOI 10.1023/a:1022114319999 | MR 1961031 | Zbl 1030.90115
[21] Georgiev, P. G., Zlateva, N. P.: Second-order subdifferentials of $C^{1,1}$ functions and optimality conditions. Set-Valued Analysis 4 (1996), 101-117. DOI 10.1007/bf00425960 | MR 1394408
[22] Hiriart-Urruty, J. B., Strodiot, J. J., Nguyen, V. H.: Generalized Hessian matrix and second-order optimality conditions for problems with $C^{1,1}$ data. Appl. Math. Comput. 11 (1984), 43-56. DOI 10.1007/bf01442169 | MR 0726975
[23] Jahn, J.: Vector Optimization. Springer-Verlag, Berlin 2004. DOI 10.1007/978-3-540-24828-6 | MR 2058695 | Zbl 1298.90092
[24] Jameson, G.: Ordered Linear Spaces. Springer-Verlag, Berlin 1970. DOI 10.1007/bfb0059130 | MR 0438077 | Zbl 0234.46007
[25] Jeyakumar, V., Luc, D. T.: Nonsmooth Vector Functions and Continuous Optimization. Springer-Verlag, Berlin 2008. MR 2354918 | Zbl 1138.90002
[26] Khanh, P. Q., Tuan, N. D.: First and second order optimality conditions using approximations for nonsmooth vector optimization in Banach spaces. J. Optim. Theory Appl. 130 (2006), 289-308. DOI 10.1007/s10957-006-9103-y | MR 2282352 | Zbl 1143.90386
[27] Khanh, P. Q., Tuan, N. D.: Optimality conditions for nonsmooth multiobjective optimization using Hadamard directional derivatives. J. Optim. Theory Appl. 133 (2007), 341-357. DOI 10.1007/s10957-007-9169-1 | MR 2333819 | Zbl 1149.90134
[28] Khanh, P. Q., Tuan, N. D.: Second-order optimality conditions with the envelope-like effect in nonsmooth multiobjective mathematical programming I: ${\ell}$-stability and set-valued directional derivatives. J. Math. Anal. Appl. 403 (2013), 695-702. DOI 10.1016/j.jmaa.2012.12.076 | MR 3037499
[29] Khanh, P. Q., Tuan, N. D.: Second-order optimality conditions with the envelope-like effect in nonsmooth multiobjective mathematical programming II: Optimality conditions. J. Math. Anal. Appl. 403 (2013), 703-714. DOI 10.1016/j.jmaa.2012.12.075 | MR 3037500 | Zbl 1291.90225
[30] Li, S. J., Xu, S.: Sufficient conditions of isolated minimizers for constrained programming problems. Numer. Funct. Anal. Optim. 31 (2010), 715-727. DOI 10.1080/01630563.2010.490970 | MR 2682838 | Zbl 1218.90214
[31] Mordukhovich, B. S.: Variational Analysis and Generalized Differentiation, I: Basic Theory, II: Applications. Springer-Verlag, Berlin 2006. MR 2191744 | Zbl 1100.49002
[32] Mordukhovich, B. S., Treiman, J. S., Zhu, Q. J.: An extended extremal principal with applications to multiobjective optimization. SIAM J. Optim. 14 (2003), 359-379. DOI 10.1137/s1052623402414701 | MR 2048166
[33] Pastor, K.: Differentiability properties of ${\ell}$-stable vector functions in infinite-dimensional normed spaces. Taiwan. J. Math. 18 (2014), 187-197. DOI 10.11650/tjm.18.2014.2605 | MR 3162119
[34] Rockafellar, R. T.: Convex Analysis. Princeton University Press, Princeton 1970. DOI 10.1515/9781400873173 | MR 0274683 | Zbl 1011.49013
[35] Rockafellar, R. T., Wets, J. B.: Variational Analysis. Springer-Verlag, New York 1998. DOI 10.1007/978-3-642-02431-3 | MR 1491362 | Zbl 0888.49001
Partner of
EuDML logo