[4] García, A. E. G., Azhmyakov, V., Basin, M. V.:
Optimal control processes associated with a class of discontinuous control systems: applications to sliding mode dynamics. Kybernetika 50 (2014), 5-18.
DOI 10.14736/kyb-2014-01-005 |
MR 3195001 |
Zbl 1302.93222
[6] Hassanzadeh, I., Mobayen, S., Harifi, A.:
Input-output feedback linearization cascade controller using genetic algorithm for rotary inverted pendulum system. Am. J. Appl. Sci. 5 (2008), 1322-1328.
DOI 10.3844/ajassp.2008.1322.1328
[7] Ignaciuk, P.:
Linear-quadratic optimal sliding plane design for networked control of dynamical systems. In: Proc. 13th International Workshop on Variable Structure Systems (VSS) 2014, pp. 1-6.
DOI 10.1109/vss.2014.6881113
[8] Jiang, X., Han, Q. L.:
On designing fuzzy controllers for a class of nonlinear networked control systems. IEEE Trans. Fuzzy Syst. 16 (2008), 1050-1060.
DOI 10.1109/tfuzz.2008.917293
[10] Mobayen, S.:
Design of a robust tracker and disturbance attenuator for uncertain systems with time delays. Complexity 21 (2015), 1, 340-348.
DOI 10.1002/cplx.21569
[11] Mobayen, S.:
Design of LMI-based global sliding mode controller for uncertain nonlinear systems with application to Genesio's chaotic system. Complexity 21 (2015), 1, 94-98.
DOI 10.1002/cplx.21545
[12] Mobayen, S.:
Design of CNF-based nonlinear integral sliding surface for matched uncertain linear systems with multiple state-delays. Nonlinear Dyn. 77 (2014), 1047-1054.
DOI 10.1007/s11071-014-1362-9 |
Zbl 1314.93023
[13] Mobayen, S.:
Fast terminal sliding mode controller design for nonlinear second-order systems with time-varying uncertainties. Complexity 21 (2015), 2, 239-244.
DOI 10.1002/cplx.21600
[14] Mobayen, S.:
Finite-time stabilization of a class of chaotic systems with matched and unmatched uncertainties: An LMI approach. Published online (2014). Complexity.
DOI 10.1002/cplx.21624
[15] Mobayen, S.:
An LMI-based robust controller design using global nonlinear sliding surfaces and application to chaotic systems. Nonlinear Dyn. 79 (2015), 1075-1084.
DOI 10.1007/s11071-014-1724-3 |
MR 3302754
[17] Mobayen, S., Yazdanpanah, M. J., Majd, V. J.:
A finite-time tracker for nonholonomic systems using recursive singularity-free FTSM. In: Proc. American Control Conference (ACC) 2011, pp. 1720-1725.
DOI 10.1109/acc.2011.5991040
[19] Niu, Y., Ho, D. W. C., Wang, X.:
Robust $H_{\infty}$ control for nonlinear stochastic systems: a sliding-mode approach. IEEE Trans. Automat. Control 53 (2008), 1695-1701.
DOI 10.1109/tac.2008.929376 |
MR 2446384
[20] Pujol, G., Rodellar, J., Rossell, J. M., Pozo, F.:
Decentralised reliable guaranteed cost control of uncertain systems: an LMI design. IET Control Theory Appl. 1 (2007), 779-785.
DOI 10.1049/iet-cta:20050364
[21] Rabiee, A., Mohammadi-Ivatloo, B., Moradi-Dalvand, M.:
Fast dynamic economic power dispatch problems solution via optimality condition decomposition. IEEE Trans. Power Syst. 29 (2014), 982-983.
DOI 10.1109/tpwrs.2013.2288028
[22] Rabiee, A., Soroudi, A., Mohammadi-Ivatloo, B., Parniani, M.:
Corrective voltage control scheme considering demand response and stochastic wind power. IEEE Trans. Power Syst. 29 (2014), 2965-2973.
DOI 10.1109/tpwrs.2014.2316018
[23] Soroudi, A., Rabiee, A.:
Optimal multi-area generation schedule considering renewable resources mix: a real-time approach. IET Gener. Transm. Dis. 7 (2013), 1011-1026.
DOI 10.1049/iet-gtd.2012.0735
[24] Soroudi, A., Mohammadi-Ivatloo, B., Rabiee, A.:
Energy hub management with intermittent wind power. In: Large Scale Renewable Power Generation, Springer, Singapore 2014, pp. 413-438.
DOI 10.1007/978-981-4585-30-9_16
[25] Tai, T. L., Lu, Y. S.:
Global sliding mode control with chatter alleviation for robust eigenvalue assignment. J. Sys. Control Engrg. 220 (2006), 573-584.
DOI 10.1243/09596518jsce197
[27] Valiloo, S., Khosrowjerdi, M. J., Salari, M.:
LMI based sliding mode surface design with mixed $H_2$/$H_{\infty}$ optimization. J. Dyn. Sys. Meas. Control 136 (2013), 011016.
DOI 10.1115/1.4025553
[28] Wu, H.:
Adaptive robust state observers for a class of uncertain nonlinear dynamical systems with delayed state perturbations. IEEE Trans. Automat. Control 54 (2009), 1407-1412.
DOI 10.1109/tac.2009.2017960 |
MR 2532639
[29] Zhang, B. L., Han, Q. L., Zhang, X. M., Yu, X.:
Sliding mode control with mixed current and delayed states for offshore steel jacket platforms. IEEE Trans. Control Syst. Technol. 22 (2014), 1769-1783.
DOI 10.1109/tcst.2013.2293401
[30] Zhang, H., Liu, X., Wang, J., Karimi, H. R.:
Robust $H_{\infty}$ sliding mode control with pole placement for a fluid power electrohydraulic actuator (EHA) system. Int. J. Adv. Manuf. Tech. 73 (2014), 1095-1104.
DOI 10.1007/s00170-014-5910-8
[31] Zhang, B. L., Ma, L., Han, Q.L.:
Sliding mode $H_{\infty}$ control for offshore steel jacket platforms subject to nonlinear self-excited wave force and external disturbance. Nonlinear Anal. Real World Appl. 14 (2013), 163-178.
DOI 10.1016/j.nonrwa.2012.05.010 |
MR 2969826 |
Zbl 1254.93062
[32] Zadeh, I. H., Mobayen, S.:
PSO-based controller for balancing rotary inverted pendulum. J. Appl. Sci. 16 (2008), 2907-2912.
DOI 10.3923/jas.2008.2907.2912
[33] Zhang, J., Xia, Y.:
Design of static output feedback sliding mode control for uncertain linear systems. IEEE Trans. Ind. Elec. 57 (2010), 2161-2170.
DOI 10.1109/tie.2009.2033485
[34] Zheng, B. C., Yang, G. H.:
$H_2$ control of linear uncertain systems considering input quantization with encoder/decoder mismatch. ISA Trans. 52 (2013), 577-582.
DOI 10.1016/j.isatra.2013.06.002 |
MR 3085982