Previous |  Up |  Next

Article

Keywords:
membership functions; aggregation functions; preferences; commutative queries; non-commutative queries; empty and overabundant answers; application
Summary:
Fuzzy logic has been used for flexible database querying for more than 30 years. This paper examines some of the issues of flexible querying which seem to have potential for further research and development from theoretical and practical points of view. More precisely, defining appropriate fuzzy sets for queries, calculating matching degrees for commutative and non-commutative query conditions, preferences, merging constraints and wishes, empty and overabundant answers, and views on practical realizations are discussed in this paper. Suggestions how to solve them and integrate into one compact solution are also outlined in this paper.
References:
[1] Andreasen, T., Pivert, O.: On the weakening of fuzzy relational queries. In: Proc. 8th International Symposium on Methodologies for Intelligent Systems, Charlotte 1994, pp. 144-151. DOI 10.1007/3-540-58495-1_15
[2] Bilgiç, T., Türkşen, I. B.: Measurement and elicitation of membership functions. In: Handbook of Granular Computing (W. Pedrycz, A. Skowron and V. Kreinovich, eds.), Wiley-Interscience, Chichester, West Sussex 2008, pp. 141-153. DOI 10.1002/9780470724163.ch6
[3] Boole, G.: The calculus of logic. Cambridge and Dublin Math. J. III (1848), 183-198.
[4] Bosc, P., Hadjali, A., Pivert, O., Smits, G.: An approach based on predicate correlation to the reduction of plethoric answer sets. In: Advances in Knowledge Discovery and Management. Studies in Computational Intelligence, Volume 398 (F. Guillet, B. Pinaud, G. Venturini and D.A. Zighed, eds.), Springer-Verlag, Heidelberg 2012, pp. 213-233. DOI 10.1007/978-3-642-25838-1_12
[5] Bosc, P., Brando, C., Hadjali, A., Jaudoin, H., Pivert, O.: Semantic proximity between queries and the empty answer problem. In: Proc. Joint IFSA-EUSFLAT Conference, Lisbon 2009, pp. 259-264.
[6] Bosc, P., Kraft, D., Petry, F.: Fuzzy sets in database and information systems: Status and opportunities. Fuzzy Sets and Systems 156 (2005), 418-426. DOI 10.1016/j.fss.2005.05.039 | MR 2180477
[7] Bosc, P., Hadjali, A., Pivert, O.: Empty versus overabundant answers to flexible relational queries. Fuzzy Sets and Systems 159 (2008), 1450-1467. DOI 10.1016/j.fss.2008.01.007 | MR 2417842 | Zbl 1176.68060
[8] Bosc, P., Hadjali, A., Pivert, O.: Weakening of fuzzy relational queries: and absolute proximity relation-based approach. Mathware and Soft Comput. 14 (2007), 35-55. MR 2387077
[9] Bosc, P., Pivert, O., Smits, G.: On a fuzzy group-by and its use for fuzzy association rule mining. In: Proc. 14th East-European Conference on Advances in Databases and Information Systems (ADBIS'10), Novi Sad 2010, pp. 88-102. DOI 10.1007/978-3-642-15576-5_9
[10] Bosc, P., Pivert, O.: On a fuzzy bipolar relational algebra. Inform. Sci. 219 (2013), 1-16. DOI 10.1016/j.ins.2012.07.018 | MR 2991555 | Zbl 1293.68093
[11] Bosc, P., Pivert, O.: On four noncommutative fuzzy connectives and their axiomatization. Fuzzy Sets and Systems 202 (2012), 42-60. DOI 10.1016/j.fss.2011.11.005 | MR 2934785 | Zbl 1254.68105
[12] Bosc, P., Pivert, O.: SQLf query functionality on top of a regular relational database management system. In: Knowledge Management in Fuzzy Databases (M. Pons, M. Vila and J. Kacprzyk, eds.), Physica-Verlag, Heidelberg 2000, pp. 171-190. DOI 10.1007/978-3-7908-1865-9_11 | Zbl 0964.68047
[13] Bosc, P., Pivert, O.: SQLf: a relational database language for fuzzy querying. IEEE Trans. Fuzzy Systems 3 (1995), 1-17. DOI 10.1109/91.366566
[14] Bosc, P., Pivert, O., Mokhtari, A.: On fuzzy queries with contextual predicates. In: Proc. International Conference on Fuzzy Systems (FUZZ-IEEE 2009), Jeju Island 2009, pp. 484-489. DOI 10.1109/fuzzy.2009.5277136
[15] Cox, E.: Fuzzy Modeling and Genetic Algorithms for Data Mining and Exploration. Morgan Kaufman, San Francisco 2005. DOI 10.1016/b978-012194275-5/50002-5 | Zbl 1113.68072
[16] Dubois, D., Prade, H.: Handling bipolar queries in fuzzy information processing. In: Handbook of Research on Fuzzy Information Processing in Databases (J. Galindo, ed.), Information Science Reference, Hershey 2008, pp. 97-114. DOI 10.4018/978-1-59904-853-6.ch004
[17] Dubois, D., Prade, H.: Using fuzzy sets in flexible querying: Why and how?. In: Flexible Query Answering Systems (T. Andreasen, H. Christiansen and H. L. Larsen, eds.), Kluwer Academic Publishers, Dordrecht 1997, pp. 45-60. DOI 10.1007/978-1-4615-6075-3_3 | Zbl 0886.68051
[18] Dubois, D., Prade, H.: Weighted minimum and maximum operations. Inform. Sci. 39 (1986), 205-210. DOI 10.1016/0020-0255(86)90035-6 | MR 0855187 | Zbl 0605.03021
[19] Garibaldi, J. M., John, R. I.: Choosing membership functions of linguistic terms. In: Proc. 12th IEEE International Conference on Fuzzy Systems (FUZZ'03), St. Louis 2003, pp. 578-583. DOI 10.1109/fuzz.2003.1209428
[20] George, R., Srikanth, R.: Data summarization using genetic algorithms and fuzzy logic. In: Genetic Algorithms and Soft Computing (F. Herrera and J. L. Verdegay, eds.), Physica Verlag, Heidelberg 1996, pp. 599-611.
[21] Glöckner, I.: Quantifier selection for linguistic data summarization. In: Proc. IEEE International Conference on Fuzzy Systems, Vancouver 2006, pp. 720-727. DOI 10.1109/fuzzy.2006.1681790
[22] Gupta, M., Qi, J.: Theory of t-norms and fuzzy inference methods. Fuzzy Sets and Systems 40 (1991), 431-450. DOI 10.1016/0165-0114(91)90171-l | MR 1104336 | Zbl 0726.03017
[23] Hudec, M., Vuc̆etić, M., Vujošević, M.: Synergy of linguistic summaries and fuzzy functional dependencies for mining knowledge in the data. In: Proc. 18th IEEE International Conference on System Theory, Control and Computing (ICSTCC 2014), Sinaia 2013, pp. 335-340.
[24] Hudec, M.: Issues in construction of linguistic summaries. In: Proc. Uncertainty Modelling 2013 (R. Mesiar and T. Bacigál, eds.), STU, Bratislava 2013, pp. 35-44.
[25] Hudec, M.: Improvement of data collection and dissemination by fuzzy logic. In: Joint UNECE/Eurostat/OECD Meeting on the Management of Statistical Information Systems (MSIS 2013), Paris - Bangkok 2013.
[26] Hudec, M., Vuc̆etić, M., Vujošević, M.: Comparison of linguistic summaries and fuzzy functional dependencies related to data mining. In: Biologically-Inspired Techniques for Knowledge Discovery and Data Mining (S. Alam, G. Dobbie, Y. Sing Koh and S. ur Rehman, eds.), Information Science Reference, Hershey 2014, pp. 174-203.
[27] Hudec, M.: Fuzzy improvement of the SQL. Yugoslav J. Oper. Res. 21 (2011), 2, 239-251. DOI 10.2298/yjor1102239h | Zbl 1289.68028
[28] Hudec, M.: An approach to fuzzy database querying, analysis and realisation. Computer Sci. Inform. Systems 6 (2009), 2, 127-140. DOI 10.2298/csis0902127h
[29] Hudec, M., Sudzina, F.: Construction of fuzzy sets and applying aggregation operators for fuzzy queries. In: Proc. 14th International Conference on Enterprise Information Systems (ICEIS 2012), Wroclaw 2012, Proceedings volume 1, pp. 253-257. DOI 10.5220/0003968802530258
[30] Kacprzyk, J., Zadrożny, S.: Protoforms of linguistic database summaries as a human consistent tool for using natural language in data mining. Int. J. Software Sci. and Comput. Intel. 1 (2009), 100-111. DOI 10.4018/jssci.2009010107
[31] Kacprzyk, J., Zadrożny, S.: FQUERY for Access: Fuzzy querying for windows-based DBMS. In: Fuzziness in Database Management Systems (P. Bosc and J. Kacprzyk, eds.), Physica-Verlag, Heidelberg 1995, pp. 415-433. DOI 10.1007/978-3-7908-1897-0_18
[32] Kacprzyk, J., Zadrożny, S., Ziółkowski, A.: FQUERY III +: A “human-consistent” database querying system based on fuzzy logic with linguistic quantifiers. Information Systems 14 (1989), 6, 443-453. DOI 10.1016/0306-4379(89)90012-4
[33] Kacprzyk, J., Ziółkowski, A.: Database queries with fuzzy linguistic quantifiers. IEEE Trans. Systems, Man and Cybernetics SMC-16 (1986), 3, 474-479. DOI 10.1109/tsmc.1986.4308982
[34] Kacprzyk, J., Pasi, G., .Vojtáš, P, Zadrożny, S.: Fuzzy querying: issues and perspectives. Kybernetika 36 (2000), 6, 605-616.
[35] Kacprzyk, J., Yager, R. R.: Linguistic summaries of data using fuzzy logic. International Journal of General Systems 30 (2001), 133-154. DOI 10.1080/03081070108960702 | MR 1884834 | Zbl 1001.68039
[36] Kacprzyk, J., Zadrożny, S.: Computing with words in intelligent database querying: standalone and internet-based applications. Inform. Sci. 134 (2001), 71-109. DOI 10.1016/s0020-0255(01)00093-7 | Zbl 1004.68568
[37] Klement, E., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000. DOI 10.1007/978-94-015-9540-7 | MR 1790096 | Zbl 1087.20041
[38] Klir, G., Yuan, B.: Fuzzy Sets and Fuzzy Logic, Theory and Applications. Prentice Hall, New Jersey 2005. Zbl 0915.03001
[39] Lacroix, M., Lavency, P.: Preferences: putting more knowledge into queries. In: Proc. 13th International Conference on Very Large Databases, Brighton, 1987 pp. 217-225.
[40] Pivert, O., Bosc, P.: Fuzzy Preference Queries to Relational Databases. Imperial College Press, London 2012. DOI 10.1142/9781848168701 | Zbl 1246.68011
[41] Rasmussen, D., Yager, R.: Summary SQL - A fuzzy tool for data mining. Intelligent Data Analysis 1 (1997), 49-58. DOI 10.1016/s1088-467x(98)00009-2
[42] Ribeiro, R., Moreira, A.: Fuzzy query interface for a business database. Int. J. of Human-Computer Studies 58 (2003), 363-391. DOI 10.1016/s1071-5819(03)00010-7
[43] Radojević, D.: Interpolative realization of Boolean algebra as a consistent frame for gradation and/or fuzziness. In: Forging New Frontiers: Fuzzy Pioneers II Studies in Fuzziness and Soft Computing (M. Nikravesh, J. Kacprzyk and L. Zadeh, eds.), Springer-Verlag, Berlin Heidelberg 2008, pp. 295-318. DOI 10.1007/978-3-540-73185-6_13
[44] Rosado, A., Ribeiro, R., Zadrożny, S., Kacprzyk, J.: Flexible query languages for relational databases: An overview. In: Flexible Databases Supporting Imprecision and Uncertainty. Studies in fuzziness and soft computing, Vol. 203 (G. Bordogna and G. Psaila, eds.), Springer-Verlag, Berlin Heidelberg 2006, pp. 3-53. DOI 10.1007/3-540-33289-8_1
[45] Siler, W., Buckley, J.: Fuzzy Expert Systems and Fuzzy Reasoning. John Wiley and Sons, New Jersey 2005. DOI 10.1002/0471698504
[46] Smits, G., Pivert, O., Girault, T.: ReqFlex: Fuzzy queries for everyone. In: Proc. 39th International Conference on Very Large Data Bases, Trento 2013, pp. 1206-1209. DOI 10.14778/2536274.2536277
[47] Smits, G., Pivert, O., Girault, T.: Towards reconciling expressivity, efficiency and user-friendliness in database flexible querying. In: Proc. 22th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2013), Hyderabad 2013, pp. 1-8. DOI 10.1109/fuzz-ieee.2013.6622356
[48] Smits, G., Pivert, O., Hadjali, A.: Fuzzy cardinalities as a basis to cooperative answering. In: Flexible Approaches in Data, Information and Knowledge Management (O. Pivert and S. Zadrożny, eds.), Studies in Computational Intelligence, volume 497, Springer, Berlin Heidelberg 2013, pp. 261-289. DOI 10.1007/978-3-319-00954-4_12
[49] Tahani, V.: A conceptual framework for fuzzy query processing: a step toward very intelligent database systems. Inform. Processing and Management 13 (1977), 5, 289-303. DOI 10.1016/0306-4573(77)90018-8 | Zbl 0361.68136
[50] Tudorie, C., Bumbaru, S., Dumitriu, L.: Relative qualification in database flexible queries. In: Proc. 3rd International IEEE Conference on Intelligent Systems, London 2006, pp. 83-88. DOI 10.1109/is.2006.348398
[51] Tudorie, C.: Qualifying objects in classical relational database querying. In: Handbook of Research on Fuzzy Information Processing in Databases (J. Galindo, ed.), Information Science Reference, Hershey 2008, pp. 218-245. DOI 10.4018/978-1-59904-853-6.ch009
[52] Tudorie, C.: Intelligent interfaces for database fuzzy querying. The annals of Dunarea de Jos University of Galati, Fascicle III 32 (2009), 2.
[53] Verkulien, J.: Assigning membership in a fuzzy set analysis. Sociological Methods Res. 33 (2005), 462-496. DOI 10.1177/0049124105274498 | MR 2137245
[54] Vuc̆etić, M., Vujošević, M.: A literature overview of functional dependencies in fuzzy relational database models. Technics Technologies Education Management 7 (2012), 4, 1593-1604.
[55] Wang, T. C., Lee, H. D., Chen, C. M.: Intelligent queries based on fuzzy set theory and SQL. In: Proc. Joint Conference on Information Science, Salt Lake City 2007, pp. 1426-1432. DOI 10.1142/9789812709677_0203
[56] Werro, N., Meier, A., Mezger, C., Schindler, G.: Concept and implementation of a fuzzy classification query language. In: Proc. International Conference on Data Mining, Las Vegas 2005, pp. 208-214.
[57] Wu, H. C.: Fuzzy Systems and Neural Networks. National Chi Nan University, Puli, Nantou 2002.
[58] Yager, R.: Higher structures in multi-criteria decision making. International Journal of Man-Machine Studies 36 (1992), 553-570. DOI 10.1016/0020-7373(92)90096-4
[59] Yager, R. R.: On ordered weighted averaging operators in multicriteria decision making. IEEE Trans. Systems, Man and Cybernetics SMC-18 (1988), 183-190. DOI 10.1109/21.87068 | MR 0931863
[60] Yager, R. R.: A new approach to the summarization of data. Information Sciences 28 (1982), 69-86. DOI 10.1016/0020-0255(82)90033-0 | MR 0694653 | Zbl 0517.94027
[61] Ying, M.: Implication operators in fuzzy logic. IEEE Trans. Fuzzy Systems 10 (2002), 1, 88-91. DOI 10.1109/91.983282
[62] Zadeh, L.: A computational approach to fuzzy quantifiers in natural languages. Computers and Math. Appl. 9 (1983), 149-184. DOI 10.1016/0898-1221(83)90013-5 | MR 0719073 | Zbl 0517.94028
[63] Zadeh, L.: Fuzzy sets. Information and Control 8 (1965), 338-353. DOI 10.1016/s0019-9958(65)90241-x | MR 0219427 | Zbl 0942.00007
[64] Zadrożny, S., Kacprzyk, J.: Issues in the practical use of the OWA operators in fuzzy querying. J. Intell. Inform. Systems 33 (2009), 307-325. DOI 10.1007/s10844-008-0068-1
[65] Zadrożny, S., Kacprzyk, J.: Bipolar queries: a way to enhance the flexibility of database queries. In: Advances in Data Management, Studies in Computational Intelligence, Vol. 223 (Z. W. Ras and A. Dardzinska, eds.), Springer-Verlag, Berlin Heidelberg 2009, pp. 49-66. DOI 10.1007/978-3-642-02190-9_3 | MR 3380483
[66] Zadrożny, S., Tré, G. de, Caluwe, R. de, Kacprzyk, J.: An overview of fuzzy approaches to flexible database querying. In: Handbook of Research on Fuzzy Information Processing in Databases (J. Galindo, ed.), Information Science Reference, Hershey 2008, pp. 34-55. DOI 10.4018/978-1-59904-853-6.ch002
[67] Zhou, S.-M., Chiclana, F., John, R. I., .Garibaldi, J. M.: Fuzzification of the OWA operators for aggregating uncertain information with uncertain weights. In: Recent Developments in the Ordered Weighted Averaging Operators: Theory and Practice (R. R. Yager, J. Kacprzyk and G. Beliakov, eds.), Studies in Fuzziness and Soft Computing Volume 265, Springer-Verlag, Berlin Heidelberg 2011, pp. 91-109. DOI 10.1007/978-3-642-17910-5_5 | MR 2778300
[68] Zhou, S.-M., Chiclana, F., John, R. I., .Garibaldi, J. M.: Type-1 OWA operators for aggregating uncertain information with uncertain weights induced by type-2 linguistic quantifiers. Fuzzy Sets and Systems 159 (2008), 3281-3296. DOI 10.1016/j.fss.2008.06.018 | MR 2467606
[69] Zimmerman, H. J., Zysno, P.: Latent connectives in human decision making. Fuzzy Sets and Systems 4 (1980), 37-51. DOI 10.1016/0165-0114(80)90062-7
Partner of
EuDML logo