Previous |  Up |  Next

Article

Keywords:
infinite $aS$-group; supplemented subgroup; nilpotent group
Summary:
Let $G$ be a group. If every nontrivial subgroup of $G$ has a proper supplement, then $G$ is called an $aS$-group. We study some properties of $aS$-groups. For instance, it is shown that a nilpotent group $G$ is an $aS$-group if and only if $G$ is a subdirect product of cyclic groups of prime orders. We prove that if $G$ is an $aS$-group which satisfies the descending chain condition on subgroups, then $G$ is finite. Among other results, we characterize all abelian groups for which every nontrivial quotient group is an $aS$-group. Finally, it is shown that if $G$ is an $aS$-group and $|G|\neq pq,p$, where $p$ and $q$ are primes, then $G$ has a triple factorization.
References:
[1] Amberg, B.: Triply factorized groups. Groups. Vol. 1 Proc. Int. Conf., St. Andrews/UK 1989, Lond. Math. Soc. Lect. Note Ser. 159 Cambridge Univ. Press, Cambridge (1991), 1-13. MR 1123967 | Zbl 0732.20014
[2] Amberg, B., Kazarin, L.: Factorizations of groups and related topics. Sci. China, Ser. A 52 (2009), 217-230. DOI 10.1007/s11425-009-0024-8 | MR 2491722 | Zbl 1204.20024
[3] Ballester-Bolinches, A., Guo, X.: On complemented subgroups of finite groups. Arch. Math. 72 (1999), 161-166. DOI 10.1007/s000130050317 | MR 1671273 | Zbl 0929.20015
[4] Chernikov, N. S.: Groups which are factorized by subgroups of finite exponents. Acta Appl. Math. 85 (2005), 81-92. DOI 10.1007/s10440-004-5588-2 | MR 2128901 | Zbl 1089.20012
[5] Fuchs, L.: Infinite Abelian Groups. Vol. 1. Pure and Applied Mathematics 36 Academic Press, New York (1970).
[6] Hall, P.: Complemented groups. J. Lond. Math. Soc. 12 (1937), 201-204. DOI 10.1112/jlms/s1-12.2.201 | MR 1575074 | Zbl 0016.39301
[7] Johnson, P. M.: A property of factorizable groups. Arch. Math. 60 (1993), 414-419. DOI 10.1007/BF01202304 | MR 1213508 | Zbl 0783.20016
[8] Kappe, L.-C., Kirtland, J.: Supplementation in groups. Glasg. Math. J. 42 (2000), 37-50. DOI 10.1017/S0017089500010065 | MR 1739693 | Zbl 0945.20016
[9] Robinson, D. J. S., Stonehewer, S. E.: Triple factorizations by abelian groups. Arch. Math. 60 (1993), 223-232. DOI 10.1007/BF01198805 | MR 1201635 | Zbl 0945.20510
[10] Scott, W. R.: Group Theory. Dover Publications, New York (1987). MR 0896269 | Zbl 0641.20001
[11] Suzuki, M.: Group Theory. I. Grundlehren der Mathematischen Wissenschaften 247 Springer, Berlin (1982). MR 0648772 | Zbl 0472.20001
Partner of
EuDML logo