[2] Blahota, I.:
Relation between Dirichlet kernels with respect to Vilenkin-like systems. Acta Acad. Paedagog. Agriensis, Sect. Mat. (N.S.) 22 (1994), 109-114.
Zbl 0882.42017
[6] Fujii, N.:
A maximal inequality for {$H^1$}-functions on a generalized Walsh-Paley group. Proc. Am. Math. Soc. 77 (1979), 111-116.
MR 0539641
[9] Gát, G., Goginava, U.:
Almost everywhere convergence of {$(C,\alpha)$}-means of quadratical partial sums of double Vilenkin-Fourier series. Georgian Math. J. 13 (2006), 447-462.
MR 2271060 |
Zbl 1107.42006
[11] Gát, G., Nagy, K.:
On the logarithmic summability of Fourier series. Georgian Math. J. 18 (2011), 237-248.
MR 2805978 |
Zbl 1221.42049
[12] Goginava, U.:
Weak type inequality for the maximal operator of the {$(C,\alpha)$} means of two-dimensional Walsh-Fourier series. Anal. Math. 36 (2010), 1-31.
DOI 10.1007/s10476-010-0101-9 |
MR 2606574
[13] Goginava, U.:
Maximal operators of Fejér-Walsh means. Acta Sci. Math. 74 (2008), 615-624.
MR 2487936 |
Zbl 1199.42127
[14] Goginava, U.:
The maximal operator of Marcinkiewicz-Fejér means of the {$d$}-dimensional Walsh-Fourier series. East J. Approx. 12 (2006), 295-302.
MR 2252557
[15] Goginava, U.:
The maximal operator of the {$(C,\alpha)$} means of the Walsh-Fourier series. Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Comput. 26 (2006), 127-135.
MR 2388683 |
Zbl 1121.42020
[16] Goginava, U.:
Almost everywhere convergence of subsequence of logarithmic means of Walsh-Fourier series. Acta Math. Acad. Paedagog. Nyházi. (N.S.) (electronic only) 21 (2005), 169-175.
MR 2162613 |
Zbl 1093.42018
[18] Moore, C. N.:
Summable Series and Convergence Factors. Dover Publications, New York (1966).
MR 0201863 |
Zbl 0142.30704
[20] Nagy, K.:
Approximation by Nörlund means of double Walsh-Fourier series for Lipschitz functions. Math. Inequal. Appl. 15 (2012), 301-322.
MR 2962234 |
Zbl 1243.42038
[21] Nagy, K.:
Approximation by Nörlund means of Walsh-Kaczmarz-Fourier series. Georgian Math. J. 18 (2011), 147-162.
MR 2787349 |
Zbl 1210.42043
[22] Nagy, K.:
Approximation by Cesàro means of negative order of Walsh-Kaczmarz-Fourier series. East J. Approx. 16 (2010), 297-311.
MR 2789336 |
Zbl 1216.42006
[25] Schipp, F.:
Rearrangements of series in the Walsh system. Math. Notes 18 (1976), 701-706 translation from\kern 3sp Mat. Zametki 18 (1975), 193-201.
MR 0390633
[28] Simon, P.:
Investigations with respect to the Vilenkin system. Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math. 27 (1984), 87-101.
MR 0823096 |
Zbl 0586.43001
[30] Tephnadze, G.:
On the maximal operators of Riesz logarithmic means of Vilenkin-Fourier series. Stud. Sci. Math. Hung. 51 (2014), 105-120.
MR 3188506 |
Zbl 1299.42098
[33] Tephnadze, G.:
On the maximal operators of Vilenkin-Fejér means on Hardy spaces. Math. Inequal. Appl. 16 (2013), 301-312.
MR 3060398 |
Zbl 1263.42008
[34] Tephnadze, G.:
On the maximal operators of Vilenkin-Fejér means. Turk. J. Math. 37 (2013), 308-318.
MR 3040854 |
Zbl 1278.42037
[35] Tephnadze, G.:
A note on the Fourier coefficients and partial sums of Vilenkin-Fourier series. Acta Math. Acad. Paedagog. Nyházi. (N.S.) (electronic only) 28 (2012), 167-176.
MR 3048092 |
Zbl 1289.42084
[36] Tephnadze, G.:
Fejér means of Vilenkin-Fourier series. Stud. Sci. Math. Hung. 49 (2012), 79-90.
MR 3059789 |
Zbl 1265.42099
[37] Tephnadze, G.:
The maximal operators of logarithmic means of one-dimensional Vilenkin-Fourier series. Acta Math. Acad. Paedagog. Nyházi. (N.S.) (electronic only) 27 (2011), 245-256.
MR 2880697 |
Zbl 1265.42100
[38] Vilenkin, N. J.:
On a class of complete orthonormal systems. Am. Math. Soc. Transl. Ser. (2), 28 (1963), 1-35 translation from\kern 3sp Izv. Akad. Nauk SSSR, Ser. Mat. 11 (1947), 363-400.
MR 0154042 |
Zbl 0036.35601