Previous |  Up |  Next

Article

Title: Stability of Caputo fractional differential equations by Lyapunov functions (English)
Author: Agarwal, Ravi
Author: O'Regan, Donal
Author: Hristova, Snezhana
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 60
Issue: 6
Year: 2015
Pages: 653-676
Summary lang: English
.
Category: math
.
Summary: The stability of the zero solution of a nonlinear nonautonomous Caputo fractional differential equation is studied using Lyapunov-like functions. The novelty of this paper is based on the new definition of the derivative of a Lyapunov-like function along the given fractional equation. Comparison results using this definition for scalar fractional differential equations are presented. Several sufficient conditions for stability, uniform stability and asymptotic uniform stability, based on the new definition of the derivative of Lyapunov functions and the new comparison result, are established. (English)
Keyword: stability
Keyword: Caputo derivative
Keyword: Lyapunov function
Keyword: fractional differential equation
MSC: 34A08
MSC: 34A34
MSC: 34D20
idZBL: Zbl 06537667
idMR: MR3436567
DOI: 10.1007/s10492-015-0116-4
.
Date available: 2015-11-17T20:32:55Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144452
.
Reference: [1] Aguila-Camacho, N., Duarte-Mermoud, M. A., Gallegos, J. A.: Lyapunov functions for fractional order systems.Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 2951-2957. MR 3182869, 10.1016/j.cnsns.2014.01.022
Reference: [2] Băleanu, D., Mustafa, O. G.: On the global existence of solutions to a class of fractional differential equations.Comput. Math. Appl. 59 (2010), 1835-1841. Zbl 1189.34006, MR 2595957, 10.1016/j.camwa.2009.08.028
Reference: [3] Burton, T. A.: Fractional differential equations and Lyapunov functionals.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 (2011), 5648-5662. Zbl 1226.34004, MR 2819307, 10.1016/j.na.2011.05.050
Reference: [4] Das, S.: Functional Fractional Calculus.Springer, Berlin (2011). Zbl 1225.26007, MR 2807926
Reference: [5] Diethelm, K.: The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Differential Operators of Caputo Type.Springer, Berlin (2010). Zbl 1215.34001, MR 2680847
Reference: [6] Duarte-Mermoud, M. A., Aguila-Camacho, N., Gallegos, J. A., Castro-Linares, R.: Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems.Commun. Nonlinear Sci. Numer. Simul. 22 (2015), 650-659. MR 3282452, 10.1016/j.cnsns.2014.10.008
Reference: [7] Hu, J.-B., Lu, G.-P., Zhang, S.-B., Zhao, L.-D.: Lyapunov stability theorem about fractional system without and with delay.Commun. Nonlinear Sci. Numer. Simul. 20 (2015), 905-913. Zbl 1311.34125, MR 3255642, 10.1016/j.cnsns.2014.05.013
Reference: [8] Lakshmikantham, V., Leela, S., Sambandham, M.: Lyapunov theory for fractional differential equations.Commun. Appl. Anal. 12 (2008), 365-376. Zbl 1191.34007, MR 2494983
Reference: [9] Lakshmikantham, V., Leela, S., Devi, J. Vasundhara: Theory of Fractional Dynamic Systems.Cambridge Scientific Publishers, Cambridge (2009).
Reference: [10] Li, Y., Chen, Y., Podlubny, I.: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability.Comput. Math. Appl. 59 (2010), 1810-1821. Zbl 1189.34015, MR 2595955, 10.1016/j.camwa.2009.08.019
Reference: [11] Li, C., Qian, D., Chen, Y.: On Riemann-Liouville and Caputo derivatives.Discrete Dyn. Nat. Soc. 2011 (2011), Article ID 562494, 15 pages. Zbl 1213.26008, MR 2782260
Reference: [12] Li, C. P., Zhang, F. R.: A survey on the stability of fractional differential equations.Eur. Phys. J. Special Topics 193 (2011), 27-47. 10.1140/epjst/e2011-01379-1
Reference: [13] Podlubny, I.: Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications.Mathematics in Science and Engineering 198 Academic Press, San Diego (1999). Zbl 0924.34008, MR 1658022
Reference: [14] Samko, S. G., Kilbas, A. A., Marichev, O. I.: Fractional Integrals and Derivatives: Theory and Applications. Transl. from the Russian.Gordon and Breach, New York (1993). Zbl 0818.26003, MR 1347689
Reference: [15] Trigeassou, J. C., Maamri, N., Sabatier, J., Oustaloup, A.: A Lyapunov approach to the stability of fractional differential equations.Signal Process. 91 (2011), 437-445. Zbl 1203.94059
Reference: [16] Devi, J. Vasundhara, McRae, F. A., Drici, Z.: Variational Lyapunov method for fractional differential equations.Comput. Math. Appl. 64 (2012), 2982-2989. MR 2989328, 10.1016/j.camwa.2012.01.070
.

Files

Files Size Format View
AplMat_60-2015-6_4.pdf 370.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo