Title:
|
Face-to-face partition of 3D space with identical well-centered tetrahedra (English) |
Author:
|
Hošek, Radim |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
60 |
Issue:
|
6 |
Year:
|
2015 |
Pages:
|
637-651 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The motivation for this paper comes from physical problems defined on bounded smooth domains $\Omega $ in 3D. Numerical schemes for these problems are usually defined on some polyhedral domains $\Omega _h$ and if there is some additional compactness result available, then the method may converge even if $\Omega _h \to \Omega $ only in the sense of compacts. Hence, we use the idea of meshing the whole space and defining the approximative domains as a subset of this partition. \endgraf Numerical schemes for which quantities are defined on dual partitions usually require some additional quality. One of the used approaches is the concept of \emph {well-centeredness}, in which the center of the circumsphere of any element lies inside that element. We show that the one-parameter family of Sommerville tetrahedral elements, whose copies and mirror images tile 3D, build a well-centered face-to-face mesh. Then, a shape-optimal value of the parameter is computed. For this value of the parameter, Sommerville tetrahedron is invariant with respect to reflection, i.e., 3D space is tiled by copies of a single tetrahedron. (English) |
Keyword:
|
rigid mesh |
Keyword:
|
well-centered mesh |
Keyword:
|
approximative domain |
Keyword:
|
single element mesh |
Keyword:
|
Sommerville tetrahedron |
MSC:
|
65N30 |
MSC:
|
65N50 |
idZBL:
|
Zbl 06537666 |
idMR:
|
MR3436566 |
DOI:
|
10.1007/s10492-015-0115-5 |
. |
Date available:
|
2015-11-17T20:31:17Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144451 |
. |
Reference:
|
[1] Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods.Handbook of Numerical Analysis. Vol. 7: Solution of Equations in $\mathbb R^n$ (Part 3). Techniques of Scientific Computing (Part 3) North-Holland/Elsevier, Amsterdam 713-1020 (2000), P. Ciarlet et al. Zbl 0981.65095, MR 1804748 |
Reference:
|
[2] Feireisl, E., Hošek, R., Michálek, M.: A convergent numerical method for the full Navier-Stokes-Fourier system in smooth physical domains.Submitted to SIAM J. Numer. Anal. (2015), Available as preprint IM-2015-3 at http://math.cas.cz. MR 3377377, 10.1093/imanum/drv049 |
Reference:
|
[3] Field, D. A., Smith, W. D.: Graded tetrahedral finite element meshes.Int. J. Numer. Methods Eng. 31 413-425 (1991). Zbl 0825.73792, 10.1002/nme.1620310302 |
Reference:
|
[4] Goldberg, M.: Three infinite families of tetrahedral space-fillers.J. Comb. Theory, Ser. A 16 348-354 (1974). Zbl 0286.52008, MR 0343156, 10.1016/0097-3165(74)90058-2 |
Reference:
|
[5] Hirani, A. N., Nakshatrala, K. B., Chaudhry, J. H.: Numerical method for Darcy flow derived using discrete exterior calculus.ArXiv:0810.3434 [math.NA] (2008). MR 3360883 |
Reference:
|
[6] Naylor, D. J.: Filling space with tetrahedra.Int. J. Numer. Methods Eng. 44 1383-1395 (1999). Zbl 0941.65012, MR 1678387, 10.1002/(SICI)1097-0207(19990410)44:10<1383::AID-NME616>3.0.CO;2-I |
Reference:
|
[7] Sazonov, I., Hassan, O., Morgan, K., Weatherill, N. P.: Yee's scheme for the integration of Maxwell's equation on unstructured meshes.Proceedings of the European Conference on Computational Fluid Dynamics (ECCOMAS CFD 2006) P. Wesseling, et al. TU Delft, The Netherlands (2006). |
Reference:
|
[8] Senechal, M.: Which tetrahedra fill space? Math.Mag. 54 227-243 (1981). MR 0644075, 10.2307/2689983 |
Reference:
|
[9] Sommerville, D.: Space-filling tetrahedra in Euclidean space.Proc. Edinburgh Math. Soc. 41 49-57 (1923). |
Reference:
|
[10] VanderZee, E., Hirani, A. N., Guoy, D., Ramos, E. A.: Well-centered triangulation.SIAM J. Sci. Comput. 31 4497-4523 (2010). Zbl 1253.65030, MR 2594991, 10.1137/090748214 |
Reference:
|
[11] VanderZee, E., Hirani, A. N., Guoy, D., Zharnitsky, V., Ramos, E. A.: Geometric and combinatorial properties of well-centered triangulations in three and higher dimensions.Comput. Geom. 46 700-724 (2013). Zbl 1269.65021, MR 3030662, 10.1016/j.comgeo.2012.11.003 |
. |