Previous |  Up |  Next

Article

Title: Face-to-face partition of 3D space with identical well-centered tetrahedra (English)
Author: Hošek, Radim
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 60
Issue: 6
Year: 2015
Pages: 637-651
Summary lang: English
.
Category: math
.
Summary: The motivation for this paper comes from physical problems defined on bounded smooth domains $\Omega $ in 3D. Numerical schemes for these problems are usually defined on some polyhedral domains $\Omega _h$ and if there is some additional compactness result available, then the method may converge even if $\Omega _h \to \Omega $ only in the sense of compacts. Hence, we use the idea of meshing the whole space and defining the approximative domains as a subset of this partition. \endgraf Numerical schemes for which quantities are defined on dual partitions usually require some additional quality. One of the used approaches is the concept of \emph {well-centeredness}, in which the center of the circumsphere of any element lies inside that element. We show that the one-parameter family of Sommerville tetrahedral elements, whose copies and mirror images tile 3D, build a well-centered face-to-face mesh. Then, a shape-optimal value of the parameter is computed. For this value of the parameter, Sommerville tetrahedron is invariant with respect to reflection, i.e., 3D space is tiled by copies of a single tetrahedron. (English)
Keyword: rigid mesh
Keyword: well-centered mesh
Keyword: approximative domain
Keyword: single element mesh
Keyword: Sommerville tetrahedron
MSC: 65N30
MSC: 65N50
idZBL: Zbl 06537666
idMR: MR3436566
DOI: 10.1007/s10492-015-0115-5
.
Date available: 2015-11-17T20:31:17Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144451
.
Reference: [1] Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods.Handbook of Numerical Analysis. Vol. 7: Solution of Equations in $\mathbb R^n$ (Part 3). Techniques of Scientific Computing (Part 3) North-Holland/Elsevier, Amsterdam 713-1020 (2000), P. Ciarlet et al. Zbl 0981.65095, MR 1804748
Reference: [2] Feireisl, E., Hošek, R., Michálek, M.: A convergent numerical method for the full Navier-Stokes-Fourier system in smooth physical domains.Submitted to SIAM J. Numer. Anal. (2015), Available as preprint IM-2015-3 at http://math.cas.cz. MR 3377377, 10.1093/imanum/drv049
Reference: [3] Field, D. A., Smith, W. D.: Graded tetrahedral finite element meshes.Int. J. Numer. Methods Eng. 31 413-425 (1991). Zbl 0825.73792, 10.1002/nme.1620310302
Reference: [4] Goldberg, M.: Three infinite families of tetrahedral space-fillers.J. Comb. Theory, Ser. A 16 348-354 (1974). Zbl 0286.52008, MR 0343156, 10.1016/0097-3165(74)90058-2
Reference: [5] Hirani, A. N., Nakshatrala, K. B., Chaudhry, J. H.: Numerical method for Darcy flow derived using discrete exterior calculus.ArXiv:0810.3434 [math.NA] (2008). MR 3360883
Reference: [6] Naylor, D. J.: Filling space with tetrahedra.Int. J. Numer. Methods Eng. 44 1383-1395 (1999). Zbl 0941.65012, MR 1678387, 10.1002/(SICI)1097-0207(19990410)44:10<1383::AID-NME616>3.0.CO;2-I
Reference: [7] Sazonov, I., Hassan, O., Morgan, K., Weatherill, N. P.: Yee's scheme for the integration of Maxwell's equation on unstructured meshes.Proceedings of the European Conference on Computational Fluid Dynamics (ECCOMAS CFD 2006) P. Wesseling, et al. TU Delft, The Netherlands (2006).
Reference: [8] Senechal, M.: Which tetrahedra fill space? Math.Mag. 54 227-243 (1981). MR 0644075, 10.2307/2689983
Reference: [9] Sommerville, D.: Space-filling tetrahedra in Euclidean space.Proc. Edinburgh Math. Soc. 41 49-57 (1923).
Reference: [10] VanderZee, E., Hirani, A. N., Guoy, D., Ramos, E. A.: Well-centered triangulation.SIAM J. Sci. Comput. 31 4497-4523 (2010). Zbl 1253.65030, MR 2594991, 10.1137/090748214
Reference: [11] VanderZee, E., Hirani, A. N., Guoy, D., Zharnitsky, V., Ramos, E. A.: Geometric and combinatorial properties of well-centered triangulations in three and higher dimensions.Comput. Geom. 46 700-724 (2013). Zbl 1269.65021, MR 3030662, 10.1016/j.comgeo.2012.11.003
.

Files

Files Size Format View
AplMat_60-2015-6_3.pdf 298.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo