Previous |  Up |  Next

Article

Keywords:
periodic solution; Hamiltonian system; $p(t)$-Laplacian system; critical point; minimax principle; least action principle
Summary:
In this paper, we deal with the existence of periodic solutions of the $p(t)$-Laplacian Hamiltonian system $$ \begin {cases} \dfrac {{\rm d}}{{\rm d}t}(|\dot {u}(t)|^{p(t)-2}\dot {u}(t)) =\nabla F(t,u(t))\quad \text {a.e.} \ t\in [0,T] ,\\ u(0)-u(T)=\dot {u}(0)-\dot {u}(T)=0. \end {cases} $$ Some new existence theorems are obtained by using the least action principle and minimax methods in critical point theory, and our results generalize and improve some existence theorems.
References:
[1] Berger, M. S., Schechter, M.: On the solvability of semilinear gradient operator equations. Adv. Math. 25 (1977), 97-132. DOI 10.1016/0001-8708(77)90001-9 | MR 0500336 | Zbl 0354.47025
[2] Fan, X.-L., Fan, X.: A Knobloch-type result for $p(t)$-Laplacian systems. J. Math. Anal. Appl. 282 (2003), 453-464. DOI 10.1016/S0022-247X(02)00376-1 | MR 1989103 | Zbl 1033.34023
[3] Fan, X.-L., Zhao, D.: On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$. J. Math. Anal. Appl. 263 (2001), 424-446. MR 1866056 | Zbl 1028.46041
[4] Fan, X.-L., Zhang, Q.-H.: Existence of solutions for $p(x)$-Laplacian Dirichlet problem. Nonlinear Anal., Theory Methods Appl. 52 (2003), 1843-1852. DOI 10.1016/S0362-546X(02)00150-5 | MR 1954585 | Zbl 1146.35353
[5] Fei, G.-H.: On periodic solutions of superquadratic Hamiltonian systems. Electron. J. Differ. Equ., paper No. 8 (2002), 1-12. MR 1884977 | Zbl 0999.37039
[6] Feng, J.-X., Han, Z.-Q.: Periodic solutions to differential systems with unbounded or periodic nonlinearities. J. Math. Anal. Appl. 323 (2006), 1264-1278. DOI 10.1016/j.jmaa.2005.11.039 | MR 2260179 | Zbl 1109.34032
[7] Jiang, Q., Tang, C. L.: Periodic and subharmonic solutions of a class of subquadratic Hamiltonian systems. J. Math. Anal. Appl. 328 (2007), 380-389. DOI 10.1016/j.jmaa.2006.05.064 | MR 2285556
[8] Li, S.-J., Willem, M.: Applications of local linking to critical point theory. J. Math. Anal. Appl. 189 (1995), 6-32. DOI 10.1006/jmaa.1995.1002 | MR 1312028 | Zbl 0820.58012
[9] Liu, J. Q.: A generalized saddle point theorem. J. Differ. Equations 82 (1989), 372-385. DOI 10.1016/0022-0396(89)90139-3 | MR 1027975 | Zbl 0682.34032
[10] Ma, S., Zhang, Y.: Existence of infinitely many periodic solutions for ordinary $p$-Laplacian systems. J. Math. Anal. Appl. 351 (2009), 469-479. DOI 10.1016/j.jmaa.2008.10.027 | MR 2472958 | Zbl 1153.37009
[11] Mawhin, J.: Semi-coercive monotone variational problems. Bull. Cl. Sci., V. Sér., Acad. R. Belg. 73 (1987), 118-130. MR 0938142 | Zbl 0647.49007
[12] Mawhin, J., Willem, M.: Critical point theory and Hamiltonian systems. Applied Mathematical Sciences, Vol. 74 Springer New York (1989). DOI 10.1007/978-1-4757-2061-7 | MR 0982267 | Zbl 0676.58017
[13] Rabinowitz, P. H.: Periodic solutions of Hamiltonian systems. Comm. Pure Appl. Math. 31 (1978), 157-184. DOI 10.1002/cpa.3160310203 | MR 0467823 | Zbl 0358.70014
[14] Rabinowitz, P. H.: On subharmonic solutions of Hamiltonian systems. Commun. Pure Appl. Math. 33 (1980), 609-633. DOI 10.1002/cpa.3160330504 | MR 0586414 | Zbl 0425.34024
[15] Tang, C.-L.: Periodic solutions of non-autonomous second order systems with $\gamma$-quasisubadditive potential. J. Math. Anal. Appl. 189 (1995), 671-675. DOI 10.1006/jmaa.1995.1044 | MR 1312546 | Zbl 0824.34043
[16] Tang, C.-L.: Periodic solutions of non-autonomous second order systems with sublinear nonlinearity. Proc. Am. Math. Soc. 126 (1998), 3263-3270. DOI 10.1090/S0002-9939-98-04706-6 | MR 1476396
[17] Tang, C.-L., Wu, X.-P.: Periodic solutions for second order systems with not uniformly coercive potential. J. Math. Anal. Appl. 259 (2001), 386-397. DOI 10.1006/jmaa.2000.7401 | MR 1842066 | Zbl 0999.34039
[18] Tang, C.-L., Wu, X.-P.: Notes on periodic solutions of subquadratic second order systems. J. Math. Anal. Appl. 285 (2003), 8-16. DOI 10.1016/S0022-247X(02)00417-1 | MR 2000135 | Zbl 1054.34075
[19] Tang, C.-L., Wu, X.-P.: A note on periodic solutions of nonautonomous second order systems. Proc. Am. Math. Soc. 132 (2004), 1295-1303. DOI 10.1090/S0002-9939-03-07185-5 | MR 2053333 | Zbl 1055.34084
[20] Tao, Z.-L., Tang, C.-L.: Periodic and subharmonic solutions of second order Hamiltonian systems. J. Math. Anal. Appl. 293 (2004), 435-445. DOI 10.1016/j.jmaa.2003.11.007 | MR 2053889 | Zbl 1042.37047
[21] Wang, X.-J., Yuan, R.: Existence of periodic solutions for $p(t)$-Laplacian systems. Nonlinear Anal., Theory Methods Appl. 70 (2009), 866-880. DOI 10.1016/j.na.2008.01.017 | MR 2468426 | Zbl 1171.34030
[22] Willem, M.: Oscillations forcées de systèms hamiltoniens. Sémin. Anal. Non Linéaire. Univ. Besancon (1981).
[23] Wu, X.-P.: Periodic solutions for nonautonomous second-order systems with bounded nonlinearity. J. Math. Anal. Appl. 230 (1999), 135-141. DOI 10.1006/jmaa.1998.6181 | MR 1669593 | Zbl 0922.34039
[24] Wu, X.-P., Tang, C.-L.: Periodic solutions of a class of non-autonomous second-order systems. J. Math. Anal. Appl. 236 (1999), 227-235. DOI 10.1006/jmaa.1999.6408 | MR 1704579 | Zbl 0971.34027
[25] Xu, B., Tang, C.-L.: Some existence results on periodic solutions of ordinary $p$-Laplacian systems. J. Math. Anal. Appl. 333 (2007), 1228-1236. DOI 10.1016/j.jmaa.2006.11.051 | MR 2331727 | Zbl 1154.34331
[26] Ye, Y.-W., Tang, C.-L.: Periodic solutions for some nonautonomous second order Hamiltonian systems. J. Math. Anal. Appl. 344 (2008), 462-471. DOI 10.1016/j.jmaa.2008.03.021 | MR 2416320 | Zbl 1142.37023
[27] Zhikov, V. V.: Averaging of functionals in the calculus of variations and elasticity theory. Math. USSR, Izv. 29 (1987), 33-66. DOI 10.1070/IM1987v029n01ABEH000958
[28] Zhikov, V. V.: On passage to the limit in nonlinear variational problems. Suss. Acad. Sci, Sb., Math. 183 (1992), 47-84. MR 1187249 | Zbl 0791.35036
Partner of
EuDML logo