[2] Bradji, A., Fuhrmann, J.:
Some error estimates for the discretization of parabolic equations on general multidimensional nonconforming spatial meshes. NMA 2010, LNCS 6046 (2011) 269-276 I. Domov, S. Dimova, N. Kolkovska Springer Berlin (2011).
MR 2794714
[4] Bradji, A., Fuhrmann, J.:
Some error estimates in finite volume method for parabolic equations. Finite Volumes for Complex Applications V. Proc. 5th Int. Symp. R. Eymard, J.-M. Hérard John Wiley & Sons (2008), 233-240.
MR 2451412
[7] Chatzipantelidis, P., Lazarov, R. D., Thomée, V.:
Parabolic finite volume element equations in nonconvex polygonal domains. Numer. Methods Partial Differ. Equ. 25 (2009), 507-525.
DOI 10.1002/num.20351 |
MR 2510745 |
Zbl 1168.65051
[8] Chatzipantelidis, P., Lazarov, R. D., Thomée, V.:
Error estimates for a finite volume element method for parabolic equations on convex polygonal domain. Numer. Methods Partial Differ. Equ. 20 (2004), 650-674.
DOI 10.1002/num.20006 |
MR 2076342
[10] Dolejší, V., Feistauer, M., Kučera, V., Sobotíková, V.:
An optimal $L^\infty(L^2)$-error estimate for the discontinuous Galerkin approximation of a nonlinear non-stationary convection-diffusion problem. IMA J. Numer. Anal. 28 (2008), 496-521.
DOI 10.1093/imanum/drm023 |
MR 2433210 |
Zbl 1158.65067
[11] Evans, L. C.: Partial Differential Equations. Graduate Studies in Mathematics, Vol. 19. Am. Math. Soc. Providence (1998).
[12] Eymard, R., Gallouët, T., Herbin, R.:
Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: A scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30 (2010), 1009-1043.
DOI 10.1093/imanum/drn084 |
MR 2727814 |
Zbl 1202.65144
[13] Eymard, R., Gallouët, T., Herbin, R.:
Cell centered discretization of non linear elliptic problems on general multidimensional polyhedral grids. J. Numer. Math. 17 (2009), 173-193.
DOI 10.1515/JNUM.2009.010 |
MR 2573566
[15] Eymard, R., Gallouët, T., Herbin, R.:
A cell-centred finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension. IMA J. Numer. Anal. 26 (2006), 326-353.
DOI 10.1093/imanum/dri036 |
MR 2218636 |
Zbl 1093.65110
[16] Eymard, R., Gallouët, T., Herbin, R.:
Finite Volume Methods. Handbook of Numerical Analysis, Vol. VII. P. G. Ciarlet, J.-L. Lions North-Holland/Elsevier Amsterdam (2000), 713-1020.
MR 1804748
[17] Feistauer, M., Felcman, J., Straškraba, I.:
Mathematical and Computational Methods for Compressible Flow. Numerical Mathematics and Scientific Computation. Oxford University Press Oxford (2003).
MR 2261900
[18] Gallouët, T., Herbin, R., Vignal, M. H.:
Error estimates for the approximate finite volume solution of convection diffusion equations with general boundary conditions. SIAM J. Numer. Anal. 37 (2000), 1935-1972.
DOI 10.1137/S0036142999351388 |
MR 1766855
[19] Thomée, V.:
Galerkin Finite Element Methods for Parabolic Problems, 2nd edition. Springer Berlin (2006).
MR 2249024