[1] Anh, N. T., Hung, N. M.:
Asymptotic formulas for solutions of parameter-depending elliptic boundary-value problems in domains with conical points. Electron. J. Differ. Equ. No. 125 (2009), 1-21.
MR 2550087 |
Zbl 1178.35159
[2] Hung, N. M.:
The first initial boundary value problem for Schrödinger systems in non-smooth domains. Diff. Uravn. 34 (1998), 1546-1556 Russian.
MR 1711290
[4] Hung, N. M., Yao, J. C.:
On the asymptotics of solutions of the first initial boundary value problem for hyperbolic systems in infinite cylinders with base containing conical points. Nonlinear Anal., Theory, Methods Appl. 71 (2009), 1620-1635.
DOI 10.1016/j.na.2008.12.056 |
MR 2524375 |
Zbl 1167.35407
[5] Hung, N. M., Son, N. T. K.:
Existence and smoothness of solutions to second initial boundary value problems for Schrödinger systems in cylinders with non-smooth base. Electron. J. Differ. Equ., No. 35 (2008), 1-11.
MR 2392939
[6] Hung, N. M., Son, N. T. M.:
On the regularity of solution of the second initial boundary value problem for Schrödinger systems in domains with conical points. Taiwanese J. Math. 13 (2009), 1885-1907.
DOI 10.11650/twjm/1500405647 |
MR 2583527 |
Zbl 1195.35113
[7] Hung, N. M., Tiep, T. X., Son, N. T. K.:
Cauchy-Neumann problem for second-order general Schrödinger equations in cylinders with non-smooth bases. Bound. Value Probl., Vol. 2009, Article ID 231802 (2009), 1-13.
DOI 10.1155/2009/231802 |
MR 2530283
[8] Kato, T.:
Perturbation Theory for Linear Operators. Springer Berlin (1966).
Zbl 0148.12601
[9] Kokotov, A., Plamenevskiĭ, B. A.:
On the asymptotics on solutions to the Neumann problem for hyperbolic systems in domains with conical points. Algebra i analiz 16 (2004), Russian; English transl. St. Petersburg Math. J. 16 (2005), 477-506.
MR 2083566
[10] Kondratiev, V. G.:
Boundary value problems for elliptic equations in domains with conical or angular points. Tr. Mosk. Mat. O.-va 16 (1967), 209-292 Russian.
MR 0226187
[11] Kondratiev, V. G.:
Singularities of solutions of Dirichlet problem for second-order elliptic equations in a neighborhood of edges. Differ. Equ. 13 (1977), 2026-2032 Russian.
MR 0486987
[12] Kozlov, V. A., Maz'ya, V. G.:
Spectral properties of the operator generated by elliptic boundary-value problems in a cone. Funct. Anal. Appl. 22 (1988), 114-121.
DOI 10.1007/BF01077601 |
MR 0947604
[13] Kozlov, V. A., Maz'ya, V. G., Rossmann, J.:
Elliptic Boundary Value Problems in Domains with Point Singularities. Math. Surv. Monographs Vol. 52. American Mathematical Society Providence (1997).
MR 1469972
[14] Kozlov, V. A., Maz'ya, V. G., Rossmann, J.:
Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations. Math. Surveys and Monographs Vol. 85. Americal Mathematical Society Providence (2001).
MR 1788991
[15] Lions, J.-L., Magenes, F.: Non-Homogeneous Boundary Value Problems and Applications, Vol. 1. Springer New York (1972).
[16] Lions, J.-L., Magenes, F.: Non-Homogeneous Boundary Value Problems and Applications, Vol. 2. Springer New York (1972).
[17] Nazarov, S. A., Plamenevskiĭ, B. A.: Elliptic Problems in Domains with Piecewise-Smooth Boundary. Nauka Moskva (1990), Russian.
[18] Solonnikov, V. A.: On the solvability of classical initial-boundary value problem for the heat equation in a dihedral angle. Zap. Nauchn. Semin. POMI 127 (1983), 7-48.