Previous |  Up |  Next

Article

Keywords:
second initial boundary value problem; Schrödinger systems; generalized solution; regularity; asymptotic behavior
Summary:
In this paper, for the second initial boundary value problem for Schrödinger systems, we obtain a performance of generalized solutions in a neighborhood of conical points on the boundary of the base of infinite cylinders. The main result are asymptotic formulas for generalized solutions in case the associated spectrum problem has more than one eigenvalue in the strip considered.
References:
[1] Anh, N. T., Hung, N. M.: Asymptotic formulas for solutions of parameter-depending elliptic boundary-value problems in domains with conical points. Electron. J. Differ. Equ. No. 125 (2009), 1-21. MR 2550087 | Zbl 1178.35159
[2] Hung, N. M.: The first initial boundary value problem for Schrödinger systems in non-smooth domains. Diff. Uravn. 34 (1998), 1546-1556 Russian. MR 1711290
[3] Hung, N. M., Anh, N. T.: Regularity of solutions of initial-boundary value problems for parabolic equations in domains with conical points. J. Differ. Equations 245 (2008), 1801-1818. DOI 10.1016/j.jde.2008.07.011 | MR 2433487 | Zbl 1170.35048
[4] Hung, N. M., Yao, J. C.: On the asymptotics of solutions of the first initial boundary value problem for hyperbolic systems in infinite cylinders with base containing conical points. Nonlinear Anal., Theory, Methods Appl. 71 (2009), 1620-1635. DOI 10.1016/j.na.2008.12.056 | MR 2524375 | Zbl 1167.35407
[5] Hung, N. M., Son, N. T. K.: Existence and smoothness of solutions to second initial boundary value problems for Schrödinger systems in cylinders with non-smooth base. Electron. J. Differ. Equ., No. 35 (2008), 1-11. MR 2392939
[6] Hung, N. M., Son, N. T. M.: On the regularity of solution of the second initial boundary value problem for Schrödinger systems in domains with conical points. Taiwanese J. Math. 13 (2009), 1885-1907. DOI 10.11650/twjm/1500405647 | MR 2583527 | Zbl 1195.35113
[7] Hung, N. M., Tiep, T. X., Son, N. T. K.: Cauchy-Neumann problem for second-order general Schrödinger equations in cylinders with non-smooth bases. Bound. Value Probl., Vol. 2009, Article ID 231802 (2009), 1-13. DOI 10.1155/2009/231802 | MR 2530283
[8] Kato, T.: Perturbation Theory for Linear Operators. Springer Berlin (1966). Zbl 0148.12601
[9] Kokotov, A., Plamenevskiĭ, B. A.: On the asymptotics on solutions to the Neumann problem for hyperbolic systems in domains with conical points. Algebra i analiz 16 (2004), Russian; English transl. St. Petersburg Math. J. 16 (2005), 477-506. MR 2083566
[10] Kondratiev, V. G.: Boundary value problems for elliptic equations in domains with conical or angular points. Tr. Mosk. Mat. O.-va 16 (1967), 209-292 Russian. MR 0226187
[11] Kondratiev, V. G.: Singularities of solutions of Dirichlet problem for second-order elliptic equations in a neighborhood of edges. Differ. Equ. 13 (1977), 2026-2032 Russian. MR 0486987
[12] Kozlov, V. A., Maz'ya, V. G.: Spectral properties of the operator generated by elliptic boundary-value problems in a cone. Funct. Anal. Appl. 22 (1988), 114-121. DOI 10.1007/BF01077601 | MR 0947604
[13] Kozlov, V. A., Maz'ya, V. G., Rossmann, J.: Elliptic Boundary Value Problems in Domains with Point Singularities. Math. Surv. Monographs Vol. 52. American Mathematical Society Providence (1997). MR 1469972
[14] Kozlov, V. A., Maz'ya, V. G., Rossmann, J.: Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations. Math. Surveys and Monographs Vol. 85. Americal Mathematical Society Providence (2001). MR 1788991
[15] Lions, J.-L., Magenes, F.: Non-Homogeneous Boundary Value Problems and Applications, Vol. 1. Springer New York (1972).
[16] Lions, J.-L., Magenes, F.: Non-Homogeneous Boundary Value Problems and Applications, Vol. 2. Springer New York (1972).
[17] Nazarov, S. A., Plamenevskiĭ, B. A.: Elliptic Problems in Domains with Piecewise-Smooth Boundary. Nauka Moskva (1990), Russian.
[18] Solonnikov, V. A.: On the solvability of classical initial-boundary value problem for the heat equation in a dihedral angle. Zap. Nauchn. Semin. POMI 127 (1983), 7-48.
Partner of
EuDML logo