Previous |  Up |  Next

Article

Keywords:
stability; limit cycles; center; bifurcation; Matlab
Summary:
In this paper we consider a class of cubic polynomial systems with two invariant parabolas and prove in the parameter space the existence of neighborhoods such that in one the system has a unique limit cycle and in the other the system has at most three limit cycles, bounded by the invariant parabolas.
References:
[1] Burnside, W. S., Panton, A. W.: The Theory of Equations, Vol. 1. Dover Publications New York (1960). MR 0115987
[2] Chavarriga, J., Sáez, E., Szántó, I., Grau, M.: Coexistence of limit cycles and invariant algebraic curves on a Kukles system. Nonlinear Anal., Theory Methods Appl. 59 (2004), 673-693. MR 2096323
[3] Cherkas, L. A., Zhilevich, L. I.: The limit cycles of certain differential equations. Differ. Uravn. 8 (1972), 1207-1213 Russian.
[4] Chicone, C.: Bifurcations of nonlinear oscillations and frequency entrainment near resonance. SIAM J. Math. Anal. 23 (1992), 1577-1608. DOI 10.1137/0523087 | MR 1185642 | Zbl 0765.58018
[5] Christopher, C.: Quadratic systems having a parabola as an integral curve. Proc. R. Soc. Edinb., Sect. A 112 (1989), 113-134. DOI 10.1017/S0308210500028195 | MR 1007539 | Zbl 0677.34034
[6] Guoren, D., Songlin, W.: Closed orbits and straight line invariants in $E_3$ systems. Acta Math. Sci. 9 (1989), 251-261 Chinese.
[7] Lloyd, N. G., Pearson, J. M., Sáez, E., Szántó, I.: A cubic Kolmogorov system with six limit cycles. Comput. Math. Appl. 44 (2002), 445-455. DOI 10.1016/S0898-1221(02)00161-X | MR 1912841 | Zbl 1210.34048
[8] MATLAB: The Language of technical computing Using MATLAB (version 7.0). MatWorks Natwick (2004).
[9] Sáez, E., Szántó, I.: A cubic system with a limit cycle bounded by two invariant parabolas. Differ. Equations Dyn. Syst. 17 (2009), 163-168. DOI 10.1007/s12591-009-0012-z | MR 2550235 | Zbl 1207.34038
[10] Yang, X.: A survey of cubic systems. Ann. Differ. Equations 7 (1991), 323-363. MR 1139341 | Zbl 0747.34019
Partner of
EuDML logo