Previous |  Up |  Next

Article

Keywords:
Weibull distribution; Hessian matrix; maximum likelihood estimator; stationary value
Summary:
The maximum likelihood estimators of the parameters for the 3-parameter Weibull distribution do not always exist. Furthermore, computationally it is difficult to find all the solutions. Thus, the case of missing some solutions and among them the maximum likelihood estimators cannot be excluded. In this paper we provide a simple rule with help of which we are able to know if the system of the log-likelihood equations has even or odd number of solutions. It is a useful tool for the detection of all the solutions of the system.
References:
[1] Bain, L. J., Engelhardt, M.: Statistical Analysis of Reliability and Life-Testing Models, 2nd ed. Marcel Dekker Inc. New York (1991).
[2] Cox, D. R., Oakes, D.: Analysis of Survival Data. Chapman & Hall London (1984) \MR 0751780. MR 0751780
[3] Gourdin, E., Hansen, P., Jaumard, B.: Finding maximum likelihood estimators for the three-parameter Weibull distribution. J. Glob. Optim. 5 (1994), 373-397. DOI 10.1007/BF01096687 | MR 1305084 | Zbl 0807.62021
[4] Johnson, N. L., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions. Vol. 1, 2nd ed. Wiley Chichester (1994). MR 1299979 | Zbl 0811.62001
[5] Lockhart, R. A., Stephens, M. A.: Estimation and Tests of Fit for the Three-Parameter Weibull Distribution. Research Report 92-10 (1993). Department of Mathematics and Statistics, Simon Frasher University Burnaby (1993). MR 1278222
[6] Lockhart, R. A., Stephens, M. A.: Estimation and tests of fit for the Three-Parameter Weibull Distribution. J. R. Stat. Soc. (Series B) 56 (1994), 491-500. MR 1278222 | Zbl 0800.62145
[7] Marsden, J. E., Tromba, A. J.: Vector Calculus, 4th ed. W. H. Freeman New York (1996).
[8] McCool, J. I.: Inference on Weibull percentiles and shape parameter from maximum likelihood estimates. IEEE Transactions on Reliability R-19 (1970), 2-9. DOI 10.1109/TR.1970.5216370
[9] Pike, M.: A suggested method of analysis of a certain class of experiments in carcinogenesis. Biometrics 22 (1966), 142-161. DOI 10.2307/2528221
[10] Proschan, F.: Theoretical explanation of observed decreasing failure rate. Technometrics 5 (1963), 375-383. DOI 10.1080/00401706.1963.10490105
[11] Qiao, H., Tsokos, C. P.: Estimation of the three parameter Weibull probability distribution. Math. Comput. Simul. 39 (1995), 173-185 \MR 0360857. DOI 10.1016/0378-4754(95)95213-5 | MR 1360857
[12] Rockette, H., Antle, C. E., Klimko, L. A.: Maximum likelihood estimation with the Weibull model. J. Am. Stat. Assoc. 69 (1974), 246-249. DOI 10.1080/01621459.1974.10480164 | Zbl 0283.62033
[13] Smith, R. L.: Maximum likelihood estimation in a class of non-regular cases. Biometrika 72 (1985), 67-90. DOI 10.1093/biomet/72.1.67 | MR 0790201
[14] Smith, R. L., Naylor, J. C.: Statistics of the three-parameter Weibull distribution. Ann. Oper. Res. 9 (1987), 577-587. DOI 10.1007/BF02054756
[15] Smith, R. L., Naylor, J. C.: A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution. J. R. Stat. Soc., Ser. C 36 (1987), 385-369 \MR 0918854. MR 0918854
Partner of
EuDML logo