Previous |  Up |  Next

Article

Keywords:
triangulation; simplexes with orthogonal corners; non-obtuse triangles
References:
[1] Aristote: Du ciel. Text établi et traduit par Paul Moraux, Les Belles Lettres, Paris 1965.
[2] Axelsson, O., Blaheta, R.: Two simple derivations of universal bounds for the C. B. S. inequality constant. Appl. Math. 49 (2004), 57–72. DOI 10.1023/B:APOM.0000024520.06175.8b | MR 2032148
[3] Bern, M., Chew, P., Eppstein, D., Ruppert, J.: Dihedral bounds for mesh generation in high dimensions. Proc. 6th AMC-SIAM Sympos. on Discrete Algorithms 1995, 189–196. MR 1321850 | Zbl 0849.68116
[4] Blaheta, R.: Nested tetrahedral grids and strengthened CBS inequality. Numer. Linear Alg. Appl. 10 (2003), 619–637. DOI 10.1002/nla.340 | MR 2030627
[5] Bliss, A., Su, F. E.: Lower bounds for simplicial covers and triangulations of cubes. Discrete Comput. Geom. 33 (2005), 669–686. DOI 10.1007/s00454-004-1128-0 | MR 2132296 | Zbl 1078.52013
[6] Brandts, J., Korotov, S., Křížek, M.: On the right triangle and its higher dimensional generalizations. Nieuwe Wiskrant 24e (2004), No. 2, 12–16.
[7] Brandts, J., Křížek, M.: Gradient superconvergence on uniform simplicial partitions of polytopes. IMA J. Numer. Anal. 23 (2003), 489–505. DOI 10.1093/imanum/23.3.489 | MR 1987941 | Zbl 1042.65081
[8] Cassidy, C., Lord, G.: A square acutely triangulated. J. Recreational Math. 13 (1980), 263–268. MR 0625260
[9] Coxeter, H. S. M.: Trisecting an orthoscheme. Computers Math. Applic. 17 (1989), 59–71. DOI 10.1016/0898-1221(89)90148-X | MR 0994189 | Zbl 0706.51019
[10] Delaunay, B.: Sur la sphère vide. Izd. Akad. Nauk SSSR, Otdel. Mat. Estestv. Nauk 7 (1934), 793–800. Zbl 0010.41101
[11] Eppstein, D., Sullivan, J. M., Üngör, A.: Tiling space and slabs with acute tetrahedra. Comput. Geom. 27 (2004), 237–255. DOI 10.1016/j.comgeo.2003.11.003 | MR 2039173 | Zbl 1054.65020
[12] Frank, F. C., Kasper, J. S.: Complex alloy structures regarded as sphere packings, Parts I and II. Acta Crystall. 11 (1958), 184–190; 12 (1959), 483–499.
[13] Fiedler, M.: Geometrie simplexu v $E_n$. Časopis Pěst. Mat. XII (1954), 297–320.
[14] Fiedler, M.: Aggregation in graphs. Coll. Math. Soc. J. Bolyai 18 (1976), 315–330. MR 0519274
[15] Fiedler, M.: Matice a grafy v euklidovské geometrii. DIMATIA MFF UK, Praha 2001.
[16] Freudenthal, H.: Simplizialzerlegungen von beschränkter Flachheit. Ann. Math. Sci. Engrg. 43 (1942), 580–582. DOI 10.2307/1968813 | MR 0007105 | Zbl 0060.40701
[17] Gardner, M.: Mathematical games. Scient. Amer. 202 (1960), 172–186. DOI 10.1038/scientificamerican0360-172
[18] Gerver, J. L.: The dissection of a polygon into nearly equilateral triangles. Geom. Dedicata 16 (1984), 93–106. DOI 10.1007/BF00147425 | MR 0757798 | Zbl 0547.05026
[19] Goldberg, M.: Three infinite families of tetrahedral space-fillers. J. Comb. Theory (A) 16 (1974), 348–354. DOI 10.1016/0097-3165(74)90058-2 | MR 0343156 | Zbl 0286.52008
[20] Hadwiger, H.: Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Die Grundlehren der Math. Wissenschaften 93. Springer-Verlag, Berlin 1957. MR 0102775 | Zbl 0078.35703
[21] Haiman, M.: A simple and relatively efficient triangulation of the $N$-cube. Discrete Comput. Geom. 6 (1991), 287–289. DOI 10.1007/BF02574690 | MR 1098809 | Zbl 0727.68044
[22] Hughes, R. B., Anderson, M. R.: Simplexity of the cube. Discrete Math. 158 (1996), 99–150. DOI 10.1016/0012-365X(95)00075-8 | MR 1411113 | Zbl 0862.52005
[23] Charsischwili, A. B.: Orthogonale Simplexe im vierdimensionalen Raum. Mitt. Akad. Wiss. der Georgischen SSR 88 (1982), 33–36.
[24] Kaiser, H.: Zum Problem der Zerlegbarkeit von Simplexen in Orthoscheme. Studia Sci. Math. Hungarica 21 (1986), 227–242. MR 0898861 | Zbl 0561.52011
[25] Katrnoška, F.: Genetické algebry. PMFA 50 (2005), 62–74.
[26] Korotov, S., Křížek, M.: Acute type refinements of tetrahedral partitions of polyhedral domains. SIAM J. Numer. Anal. 39 (2001), 724–733. DOI 10.1137/S003614290037040X | MR 1860255 | Zbl 1069.65017
[27] Korotov, S., Křížek, M.: Global and local refinement techniques yielding nonobtuse tetrahedral partitions. Comput. Math. Appl. 50 (2005), 1105–1113. DOI 10.1016/j.camwa.2005.08.012 | MR 2167747 | Zbl 1086.65116
[28] Korotov, S., Křížek, M., Neittaanmäki, P.: Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle. Math. Comp. 70 (2001), 107–119. DOI 10.1090/S0025-5718-00-01270-9 | MR 1803125 | Zbl 1001.65125
[29] Křížek, M.: Superconvergence phenomena on three-dimensional meshes. Internat. J. Numer. Anal. Model. 2 (2005), 43–56. MR 2112657 | Zbl 1071.65139
[30] Křížek, M.: There is no face-to-face partition of $R^5$ into acute simplices. Submitted in 2005, 1–9.
[31] Křížek, M., Šolc, J.: Acute versus nonobtuse tetrahedralizations. In: Conjugate Gradient Algorithms and Finite Element Methods, Springer-Verlag, Berlin 2004, 161–170. MR 2082560 | Zbl 1069.65133
[32] Kuhn, H. W.: Some combinatorial lemmas in topology. IBM J. Res. Develop. 45 (1960), 518–524. DOI 10.1147/rd.45.0518 | MR 0124038 | Zbl 0109.15603
[33] Lenhard, H. C.: Zerlegung von Tetraedern in Orthogonaltetraeder. Elem. Math. 15 (1960), 106–107. MR 0116226
[34] Lindgren, H.: Geometric dissections. Van Nostrand, Princeton, New Jersey 1964.
[35] Lyusternik, L. A.: Convex figures and polyhedra. Dover Publications, Inc., New York 1963; Moscow 1956. MR 0161219 | Zbl 0113.16201
[36] Manheimer, W., Federico, J. P. et al.: Dissecting an obtuse triangle into acute triangles. Amer. Math. Monthly 67 (1960), 923.
[37] Møller, J.: Lectures on random Voronoi tessellations. Springer, New York 1994. MR 1295245
[38] Okabe, A., Boots, B., Sugihara, K.: Spatial tessellations. Concepts and applications of Voronoi diagrams. John Wiley & Sons, New York 1992. MR 1210959 | Zbl 0877.52010
[39] Penrose, R.: Pentaplexity: a class of nonperiodic tilings of the plane. Math. Intelligencer 2 (1979/80), 32–37. DOI 10.1007/BF03024384 | MR 0558670
[40] Rajan, V. T.: Optimality of the Delaunay triangulation in $R^d$. Discrete Comput. Geom. 12 (1994), 189–202. DOI 10.1007/BF02574375 | MR 1283887
[41] Schläfli, L.: Theorie der vielfachen Kontinuität (aus dem Jahre 1852). Aufträge der Denkschriften-Kommission der Schweizer naturforschender Gesellschaft, Zurcher & Furre 1901. In: Gesammelte mathematische Abhandlungen, Birkhäuser, Basel 1950.
[42] Stillwell, J.: Stodvacetistěn v $R^4$. PMFA 46 (2001), 265–280.
[43] Struik, D. J.: Het probleem “De impletione loci”. Nieuf Archief voor Wiskunde, 2nd series, 15 (1925), 121–134.
[44] Stoyan, D., Kendall, W. S., Mecke, J.: Stochastic geometry and its applications. John Wiley & Sons, New York 1985, 1995. MR 0895588
[45] Tschirpke, K.: On the dissection of simplices into orthoschemes. Geom. Dedicata 46 (1993), 313–329. DOI 10.1007/BF01263622 | MR 1220122 | Zbl 0780.52016
[46] Tschirpke, K.: Orthoschemzerlegungen fünfdimensionaler Simplexe in Räumen konstanter Krümmung. Dissertation, Univ. Jena 1993. MR 1220122
[47] Tschirpke, K.: The dissection of five-dimensional simplices into orthoschemes. Beiträge zur Algebra und Geometrie 35 (1994), 1–11. MR 1287191 | Zbl 0806.52012
[48] Voronoï, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Recherches sur les parallélloedres primitifs. J. Reine Angew. Math. 134 (1908), 198–287.
[49] Zhu, Q., Lin, Q., Liu, L.: Monte Carlo finite element method. Sborník semináře Programy a algoritmy numerické matematiky, MÚ AV ČR, Praha 1996, 210–217.
[50] Zlámal, M.: Finite element solution of the fundamental equations of semiconductor devices, Parts I and II. Math. Comp. 49 (1986), 27–43; Appl. Math. 46 (2001), 251–294. DOI 10.2307/2008212
[51] www.ics.uci.edu/~eppstein/junkyard/all.html
Partner of
EuDML logo