Previous |  Up |  Next

Article

Title: O triangulacích bez tupých úhlů (Czech)
Title: On the triangulation without obtuse angles (English)
Author: Brandts, Jan
Author: Korotov, Sergej
Author: Křížek, Michal
Language: Czech
Journal: Pokroky matematiky, fyziky a astronomie
ISSN: 0032-2423
Volume: 50
Issue: 3
Year: 2005
Pages: 193-207
.
Category: math
.
Keyword: triangulation
Keyword: simplexes with orthogonal corners
Keyword: non-obtuse triangles
MSC: 65D18
MSC: 65N55
idZBL: Zbl 1265.65033
.
Date available: 2010-12-11T21:06:17Z
Last updated: 2015-11-29
Stable URL: http://hdl.handle.net/10338.dmlcz/141271
.
Reference: [1] Aristote: Du ciel.Text établi et traduit par Paul Moraux, Les Belles Lettres, Paris 1965.
Reference: [2] Axelsson, O., Blaheta, R.: Two simple derivations of universal bounds for the C. B. S. inequality constant.Appl. Math. 49 (2004), 57–72. MR 2032148, 10.1023/B:APOM.0000024520.06175.8b
Reference: [3] Bern, M., Chew, P., Eppstein, D., Ruppert, J.: Dihedral bounds for mesh generation in high dimensions.Proc. 6th AMC-SIAM Sympos. on Discrete Algorithms 1995, 189–196. Zbl 0849.68116, MR 1321850
Reference: [4] Blaheta, R.: Nested tetrahedral grids and strengthened CBS inequality.Numer. Linear Alg. Appl. 10 (2003), 619–637. MR 2030627, 10.1002/nla.340
Reference: [5] Bliss, A., Su, F. E.: Lower bounds for simplicial covers and triangulations of cubes.Discrete Comput. Geom. 33 (2005), 669–686. Zbl 1078.52013, MR 2132296, 10.1007/s00454-004-1128-0
Reference: [6] Brandts, J., Korotov, S., Křížek, M.: On the right triangle and its higher dimensional generalizations.Nieuwe Wiskrant 24e (2004), No. 2, 12–16.
Reference: [7] Brandts, J., Křížek, M.: Gradient superconvergence on uniform simplicial partitions of polytopes.IMA J. Numer. Anal. 23 (2003), 489–505. Zbl 1042.65081, MR 1987941, 10.1093/imanum/23.3.489
Reference: [8] Cassidy, C., Lord, G.: A square acutely triangulated.J. Recreational Math. 13 (1980), 263–268. MR 0625260
Reference: [9] Coxeter, H. S. M.: Trisecting an orthoscheme.Computers Math. Applic. 17 (1989), 59–71. Zbl 0706.51019, MR 0994189, 10.1016/0898-1221(89)90148-X
Reference: [10] Delaunay, B.: Sur la sphère vide.Izd. Akad. Nauk SSSR, Otdel. Mat. Estestv. Nauk 7 (1934), 793–800. Zbl 0010.41101
Reference: [11] Eppstein, D., Sullivan, J. M., Üngör, A.: Tiling space and slabs with acute tetrahedra.Comput. Geom. 27 (2004), 237–255. Zbl 1054.65020, MR 2039173, 10.1016/j.comgeo.2003.11.003
Reference: [12] Frank, F. C., Kasper, J. S.: Complex alloy structures regarded as sphere packings, Parts I and II.Acta Crystall. 11 (1958), 184–190; 12 (1959), 483–499.
Reference: [13] Fiedler, M.: Geometrie simplexu v $E_n$.Časopis Pěst. Mat. XII (1954), 297–320.
Reference: [14] Fiedler, M.: Aggregation in graphs.Coll. Math. Soc. J. Bolyai 18 (1976), 315–330. MR 0519274
Reference: [15] Fiedler, M.: Matice a grafy v euklidovské geometrii.DIMATIA MFF UK, Praha 2001.
Reference: [16] Freudenthal, H.: Simplizialzerlegungen von beschränkter Flachheit.Ann. Math. Sci. Engrg. 43 (1942), 580–582. Zbl 0060.40701, MR 0007105, 10.2307/1968813
Reference: [17] Gardner, M.: Mathematical games.Scient. Amer. 202 (1960), 172–186. 10.1038/scientificamerican0360-172
Reference: [18] Gerver, J. L.: The dissection of a polygon into nearly equilateral triangles.Geom. Dedicata 16 (1984), 93–106. Zbl 0547.05026, MR 0757798, 10.1007/BF00147425
Reference: [19] Goldberg, M.: Three infinite families of tetrahedral space-fillers.J. Comb. Theory (A) 16 (1974), 348–354. Zbl 0286.52008, MR 0343156, 10.1016/0097-3165(74)90058-2
Reference: [20] Hadwiger, H.: Vorlesungen über Inhalt, Oberfläche und Isoperimetrie.Die Grundlehren der Math. Wissenschaften 93. Springer-Verlag, Berlin 1957. Zbl 0078.35703, MR 0102775
Reference: [21] Haiman, M.: A simple and relatively efficient triangulation of the $N$-cube.Discrete Comput. Geom. 6 (1991), 287–289. Zbl 0727.68044, MR 1098809, 10.1007/BF02574690
Reference: [22] Hughes, R. B., Anderson, M. R.: Simplexity of the cube.Discrete Math. 158 (1996), 99–150. Zbl 0862.52005, MR 1411113, 10.1016/0012-365X(95)00075-8
Reference: [23] Charsischwili, A. B.: Orthogonale Simplexe im vierdimensionalen Raum.Mitt. Akad. Wiss. der Georgischen SSR 88 (1982), 33–36.
Reference: [24] Kaiser, H.: Zum Problem der Zerlegbarkeit von Simplexen in Orthoscheme.Studia Sci. Math. Hungarica 21 (1986), 227–242. Zbl 0561.52011, MR 0898861
Reference: [25] Katrnoška, F.: Genetické algebry.PMFA 50 (2005), 62–74.
Reference: [26] Korotov, S., Křížek, M.: Acute type refinements of tetrahedral partitions of polyhedral domains.SIAM J. Numer. Anal. 39 (2001), 724–733. Zbl 1069.65017, MR 1860255, 10.1137/S003614290037040X
Reference: [27] Korotov, S., Křížek, M.: Global and local refinement techniques yielding nonobtuse tetrahedral partitions.Comput. Math. Appl. 50 (2005), 1105–1113. Zbl 1086.65116, MR 2167747, 10.1016/j.camwa.2005.08.012
Reference: [28] Korotov, S., Křížek, M., Neittaanmäki, P.: Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle.Math. Comp. 70 (2001), 107–119. Zbl 1001.65125, MR 1803125, 10.1090/S0025-5718-00-01270-9
Reference: [29] Křížek, M.: Superconvergence phenomena on three-dimensional meshes.Internat. J. Numer. Anal. Model. 2 (2005), 43–56. Zbl 1071.65139, MR 2112657
Reference: [30] Křížek, M.: There is no face-to-face partition of $R^5$ into acute simplices.Submitted in 2005, 1–9.
Reference: [31] Křížek, M., Šolc, J.: Acute versus nonobtuse tetrahedralizations.In: Conjugate Gradient Algorithms and Finite Element Methods, Springer-Verlag, Berlin 2004, 161–170. Zbl 1069.65133, MR 2082560
Reference: [32] Kuhn, H. W.: Some combinatorial lemmas in topology.IBM J. Res. Develop. 45 (1960), 518–524. Zbl 0109.15603, MR 0124038, 10.1147/rd.45.0518
Reference: [33] Lenhard, H. C.: Zerlegung von Tetraedern in Orthogonaltetraeder.Elem. Math. 15 (1960), 106–107. MR 0116226
Reference: [34] Lindgren, H.: Geometric dissections.Van Nostrand, Princeton, New Jersey 1964.
Reference: [35] Lyusternik, L. A.: Convex figures and polyhedra.Dover Publications, Inc., New York 1963; Moscow 1956. Zbl 0113.16201, MR 0161219
Reference: [36] Manheimer, W., Federico, J. P. et al.: Dissecting an obtuse triangle into acute triangles.Amer. Math. Monthly 67 (1960), 923.
Reference: [37] Møller, J.: Lectures on random Voronoi tessellations.Springer, New York 1994. MR 1295245
Reference: [38] Okabe, A., Boots, B., Sugihara, K.: Spatial tessellations. Concepts and applications of Voronoi diagrams.John Wiley & Sons, New York 1992. Zbl 0877.52010, MR 1210959
Reference: [39] Penrose, R.: Pentaplexity: a class of nonperiodic tilings of the plane.Math. Intelligencer 2 (1979/80), 32–37. MR 0558670, 10.1007/BF03024384
Reference: [40] Rajan, V. T.: Optimality of the Delaunay triangulation in $R^d$.Discrete Comput. Geom. 12 (1994), 189–202. MR 1283887, 10.1007/BF02574375
Reference: [41] Schläfli, L.: Theorie der vielfachen Kontinuität (aus dem Jahre 1852).Aufträge der Denkschriften-Kommission der Schweizer naturforschender Gesellschaft, Zurcher & Furre 1901. In: Gesammelte mathematische Abhandlungen, Birkhäuser, Basel 1950.
Reference: [42] Stillwell, J.: Stodvacetistěn v $R^4$.PMFA 46 (2001), 265–280.
Reference: [43] Struik, D. J.: Het probleem “De impletione loci”.Nieuf Archief voor Wiskunde, 2nd series, 15 (1925), 121–134.
Reference: [44] Stoyan, D., Kendall, W. S., Mecke, J.: Stochastic geometry and its applications.John Wiley & Sons, New York 1985, 1995. MR 0895588
Reference: [45] Tschirpke, K.: On the dissection of simplices into orthoschemes.Geom. Dedicata 46 (1993), 313–329. Zbl 0780.52016, MR 1220122, 10.1007/BF01263622
Reference: [46] Tschirpke, K.: Orthoschemzerlegungen fünfdimensionaler Simplexe in Räumen konstanter Krümmung.Dissertation, Univ. Jena 1993. MR 1220122
Reference: [47] Tschirpke, K.: The dissection of five-dimensional simplices into orthoschemes.Beiträge zur Algebra und Geometrie 35 (1994), 1–11. Zbl 0806.52012, MR 1287191
Reference: [48] Voronoï, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Recherches sur les parallélloedres primitifs.J. Reine Angew. Math. 134 (1908), 198–287.
Reference: [49] Zhu, Q., Lin, Q., Liu, L.: Monte Carlo finite element method.Sborník semináře Programy a algoritmy numerické matematiky, MÚ AV ČR, Praha 1996, 210–217.
Reference: [50] Zlámal, M.: Finite element solution of the fundamental equations of semiconductor devices, Parts I and II.Math. Comp. 49 (1986), 27–43; Appl. Math. 46 (2001), 251–294. 10.2307/2008212
Reference: [51] : .www.ics.uci.edu/~eppstein/junkyard/all.html
.

Files

Files Size Format View
PokrokyMFA_50-2005-3_3.pdf 368.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo