[3] Gear, C. W.:
The simultaneous numerical solution of differential-algebraic equations. IEEE Trans. Circuit Theory, CT-18 (1971), 89–95.
DOI 10.1109/TCT.1971.1083221
[5] Lötstedt, P., Petzold, L.:
Numerical solution of nonlinear differential equations with algebraic constraints I: Convergence results for backward differentiation formulas. Math. Comp. 46 (1986), 491–516.
DOI 10.2307/2007989 |
MR 0829621
[6] Hairer, E., Lubich, C., Roche, M.:
The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods. Springer-Verlag, Berlin 1989.
MR 1027594 |
Zbl 0683.65050
[8] Griepentrog, E., Märtz, R.:
Differential-Algebraic Equations and Their Numerical Treatment. Teubner, Leipzig 1986.
MR 0877350
[9] Märtz, R.:
On initial value problems in differential-algebraic equations and their numerical treatment. Computing 35 (1985), 13–37.
DOI 10.1007/BF02240144 |
MR 0809676
[10] Hindmarsh, A. C.:
LSODE and LSODI, two new initial value ordinary differential equation solvers. ACM-SIGNUM Newsletters 15 (1980), 10–11.
DOI 10.1145/1218052.1218054
[11] Petzold, L. R.:
A description of DASSL: a differential-algebraic system solver. In: Scientific Computing, eds. Stepleman et al., North-Holland, Amsterdam 1983, 65–68.
MR 0751605
[12] Brenan, K. E., Campbell, S. L., Petzold, L. R.:
Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. North-Holland, Amsterdam 1989.
MR 1101809 |
Zbl 0699.65057
[14] Gear, C. W.:
Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall, Englewood Cliffs, NJ 1971.
MR 0315898
[15] Hairer, E., Wanner, G.:
Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. Springer-Verlag, Berlin 1991.
MR 1111480 |
Zbl 0729.65051
[16] Hindmarsh, A., Taylor, A.: User Documentation for IDA: A Differential-Algebraic Equation Solver for Sequential and Parallel Computers. Lawrence Livermore National Laboratory report, UCRL-MA-136910, December 1999.
[17] Reisig, G., Martinson, W. S., Barton, P. I.:
Differential-algebraic equations of index $1$ may have an arbitrary high structural index. SIAM J. Scientific Computing (2000), 1987–1990.
MR 1762026
[18] Rabier, P. J., Rheinboldt, W. C.:
Theoretical and numerical analysis of differentialālgebraic equations. Handbook of Numerical Analysis VIII, Elsevier Publ., North Holland 2002.
MR 1893418