Previous |  Up |  Next

Article

Keywords:
constrained differential equation; numerical method; systems of differential-algebraic equations
References:
[1] Silverman, L. M.: Inversion of multivariable systems. IEEE Trans. Aut. Control, AC-14 (1969), 270–276. DOI 10.1109/TAC.1969.1099169 | MR 0267927
[2] Luenberger, D. G.: Dynamic equations in descriptor form. IEEE Trans. Aut. Control, AC-22 (1977), 312–321. DOI 10.1109/TAC.1977.1101502 | MR 0479482 | Zbl 0354.93007
[3] Gear, C. W.: The simultaneous numerical solution of differential-algebraic equations. IEEE Trans. Circuit Theory, CT-18 (1971), 89–95. DOI 10.1109/TCT.1971.1083221
[4] Gear, C. W., Petzold, L. R.: ODE methods for the solution of differential/algebraic systems. SIAM J. Numer. Anal. 21 (1984), 716–728. DOI 10.1137/0721048 | MR 0749366 | Zbl 0557.65053
[5] Lötstedt, P., Petzold, L.: Numerical solution of nonlinear differential equations with algebraic constraints I: Convergence results for backward differentiation formulas. Math. Comp. 46 (1986), 491–516. DOI 10.2307/2007989 | MR 0829621
[6] Hairer, E., Lubich, C., Roche, M.: The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods. Springer-Verlag, Berlin 1989. MR 1027594 | Zbl 0683.65050
[7] Hairer, E., Lubich, C.: Extrapolation at stiff differential equations. Numer. Math. 52 (1988), 377–400. DOI 10.1007/BF01462235 | MR 0932706 | Zbl 0643.65034
[8] Griepentrog, E., Märtz, R.: Differential-Algebraic Equations and Their Numerical Treatment. Teubner, Leipzig 1986. MR 0877350
[9] Märtz, R.: On initial value problems in differential-algebraic equations and their numerical treatment. Computing 35 (1985), 13–37. DOI 10.1007/BF02240144 | MR 0809676
[10] Hindmarsh, A. C.: LSODE and LSODI, two new initial value ordinary differential equation solvers. ACM-SIGNUM Newsletters 15 (1980), 10–11. DOI 10.1145/1218052.1218054
[11] Petzold, L. R.: A description of DASSL: a differential-algebraic system solver. In: Scientific Computing, eds. Stepleman et al., North-Holland, Amsterdam 1983, 65–68. MR 0751605
[12] Brenan, K. E., Campbell, S. L., Petzold, L. R.: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. North-Holland, Amsterdam 1989. MR 1101809 | Zbl 0699.65057
[13] Gear, C. W.: Differential-algebraic equations, indices, and integral algebraic equations. SIAM J. Numer. Anal. 27 (1990), 1527–1534. DOI 10.1137/0727089 | MR 1080336 | Zbl 0732.65061
[14] Gear, C. W.: Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall, Englewood Cliffs, NJ 1971. MR 0315898
[15] Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. Springer-Verlag, Berlin 1991. MR 1111480 | Zbl 0729.65051
[16] Hindmarsh, A., Taylor, A.: User Documentation for IDA: A Differential-Algebraic Equation Solver for Sequential and Parallel Computers. Lawrence Livermore National Laboratory report, UCRL-MA-136910, December 1999.
[17] Reisig, G., Martinson, W. S., Barton, P. I.: Differential-algebraic equations of index $1$ may have an arbitrary high structural index. SIAM J. Scientific Computing (2000), 1987–1990. MR 1762026
[18] Rabier, P. J., Rheinboldt, W. C.: Theoretical and numerical analysis of differentialālgebraic equations. Handbook of Numerical Analysis VIII, Elsevier Publ., North Holland 2002. MR 1893418
Partner of
EuDML logo