[1] Bourbaki, N.: Éléments de Mathématique IX, Livre IV: Fonctions d'une variable réelle (Théorie élémentaire). Second ed., Actualités Scientifiques et Industrielles, vol. 1074, Hermann, Paris (1958).
[5] Duda, J.:
Absolutely continuous functions with values in metric spaces. Real Anal. Exchange 32 (2006-2007), 569-581.
MR 2369866
[6] Duda, J., Veselý, L., Zajíček, L.:
On d.c. functions and mappings. Atti Sem. Mat. Fis. Univ. Modena 51 (2003), 111-138.
MR 1993883 |
Zbl 1072.46025
[7] Duda, J., Zajíček, L.:
Curves in Banach spaces which allow a $C^2$ parametrization or a parametrization with finite convexity. Preprint (2006), electronically available at {\it
http://arxiv.org/abs/math/0603735v1}
[8] Federer, H.:
Geometric Measure Theory. Grundlehren der math. Wiss., vol. 153, Springer, New York (1969).
MR 0257325 |
Zbl 0176.00801
[13] Roberts, A. W., Varberg, E. D.:
Convex Functions. Pure and Applied Mathematics, vol. 57, Academic Press, New York-London (1973).
MR 0442824 |
Zbl 0271.26009
[14] Veselý, L.:
On the multiplicity points of monotone operators on separable Banach spaces. Comment. Math. Univ. Carolin. 27 (1986), 551-570.
MR 0873628
[15] Veselý, L.:
A short proof of a theorem on compositions of d.c. mappings. Proc. Amer. Math. Soc. 101 (1987), 685-686.
DOI 10.2307/2046671 |
MR 0911033
[16] Veselý, L.: Topological properties of monotone operators, accretive operators and metric projections. CSc Dissertation (PhD Thesis), Charles University Prague (1990).
[17] Veselý, L., Zajíček, L.:
Delta-convex mappings between Banach spaces and applications. Dissertationes Math. (Rozprawy Mat.) 289 (1989), 52 pp.
MR 1016045
[19] Veselý, L., Zajíček, L.:
On compositions of d.c. functions and mappings. (to appear) in J. Convex Anal.
MR 1614031