[1] Argyros, I. K.:
A new convergence theorem for Steffensen's method on Banach spaces and applications. Southwest J. Pure Appl. Math. 1 (1997), 23-29.
MR 1643344 |
Zbl 0895.65024
[4] Argyros, I. K.:
Approximate Solution of Operator Equations with Applications. World Scientific Publ. Comp., New Jersey, USA (2005).
MR 2174829 |
Zbl 1086.47002
[5] Argyros, I. K.:
An improved convergence analysis of a superquadratic method for solving generalized equations. Rev. Colombiana Math. 40 (2006), 65-73.
MR 2286853 |
Zbl 1189.65130
[7] Cătinas, E.:
On some iterative methods for solving nonlinear equations. Rev. Anal. Numér. Théor. Approx. 23 (1994), 17-53.
MR 1325892 |
Zbl 0818.65050
[8] Dontchev, A. L.:
Uniform convergence of the Newton method for Aubin continuous maps. Serdica Math. J. 22 (1996), 385-398.
MR 1455391 |
Zbl 0865.90115
[10] Geoffroy, M. H., Hilout, S., Piétrus, A.:
Acceleration of convergence in Dontchev's iterative method for solving variational inclusions. Serdica Math. J. 29 (2003), 45-54.
MR 1981104
[12] Hilout, S., Piétrus, A.:
A semilocal convergence analysis of a secant-type method for solving generalized equations. Positivity 10 (2006), 693-700.
DOI 10.1007/s11117-006-0044-3 |
MR 2280643
[14] Hernández, M. A., Rubio, M. J.:
$\omega$-conditioned divided differences to solve nonlinear equations. Monografías del Semin. Matem. García de Galdeano 27 (2003), 323-330.
MR 2026031 |
Zbl 1056.47055
[15] Ioffe, A. D., Tihomirov, V. M.:
Theory of Extremal Problems. North Holland, Amsterdam (1979).
MR 0528295 |
Zbl 0407.90051
[18] Piétrus, A.:
Generalized equations under mild differentiability conditions. Rev. Real. Acad. Ciencias de Madrid 94 (2000), 15-18.
MR 1829498
[19] Piétrus, A.:
Does Newton's method for set-valued maps converges uniformly in mild differentiability context? Rev. Colombiana Mat. 32 (2000), 49-56.
MR 1905206
[21] Rockafellar, R. T., Wets, R. J.-B.:
Variational Analysis. A Series of Comprehensives Studies in Mathematics, Springer, 317 (1998).
MR 1491362 |
Zbl 0888.49001