Previous |  Up |  Next

Article

Keywords:
nonparametric regression models; smoothness condition
Summary:
Local polynomials are used to construct estimators for the value $m(x_{0})$ of the regression function $m$ and the values of the derivatives $D_{\gamma }m(x_{0})$ in a general class of nonparametric regression models. The covariables are allowed to be random or non-random. Only asymptotic conditions on the average distribution of the covariables are used as smoothness of the experimental design. This smoothness condition is discussed in detail. The optimal stochastic rate of convergence of the estimators is established. The results cover the special cases of regression models with i.i.d. errors and the case of observations at an equidistant lattice.
References:
[1] Donoho D. L., Liu R. C.: Geometrizing rates of convergence, III. Ann. Statist. 19 (1991), 2, 668–701 DOI 10.1214/aos/1176348115 | MR 1105839 | Zbl 0754.62029
[2] Fan J.: Design-adaptive nonparametric regression. J. Amer. Statist. Assoc. 87 (1992), 420, 998–1004 MR 1209561 | Zbl 0850.62354
[3] Fan J.: Local linear regression smoothers and their minimax efficiencies. Ann. Statist. 21 (1993), 196–216 DOI 10.1214/aos/1176349022 | MR 1212173 | Zbl 0773.62029
[4] Fan J., Gasser T., Gijbels I., Brockmann, M., Engel J.: Local polynomial regression: Optimal kernels and asymptotic minimax efficiency. Ann. Inst. Statist. Math. 49 (1997), 1, 79–99 DOI 10.1023/A:1003162622169 | MR 1450693 | Zbl 0890.62032
[5] Gasser T., Müller H.-G.: Estimating regression functions and their derivatives by the kernel method. Scand. J. Statist. 11 (1984), 171–185 MR 0767241 | Zbl 0548.62028
[6] Hall P.: On convergence rates in nonparametric problems. Internat. Statist. Rev. 57 (1989), 1, 45–58 DOI 10.2307/1403583 | Zbl 0707.62091
[7] Cam L. Le: Asymptotic Methods in Statistical Decision Theory. Springer–Verlag, Berlin 1986 MR 0856411 | Zbl 0605.62002
[8] Liese F., Vajda I.: Convex Statistical Distances. Teubner, Leipzig 1987 MR 0926905 | Zbl 0656.62004
[9] Müller H.-G.: Goodness-of-fit diagnostics for regression models. Scand. J. Statist. 19 (1992), 2, 157–172 MR 1173597 | Zbl 0760.62037
[10] Müller W. G.: Optimal design for local fitting. J. Statist. Plann. Inference 55 (1996), 3, 389–397 DOI 10.1016/S0378-3758(95)00197-2 | MR 1422141 | Zbl 0866.62048
[11] Nadaraya E. A.: On estimating regression. Theory Probab. Appl. 9 (1964), 141–142 Zbl 0136.40902
[12] Park D.: Comparison of two response curve estimators. J. Statist. Comput. Simulation 62 (1999), 3, 259–269 DOI 10.1080/00949659908811935 | MR 1703258 | Zbl 0918.62035
[13] Rényi A.: On measures of entropy and information. In: Proc. 4th Berkeley Symp., Berkeley 1961, Vol. 1, pp. 547–561 MR 0132570
[14] Ruppert D., Wand P.: Multivariate locally weighted least squares regression. Ann. Statist. 22 (1994), 3, 1346–1370 DOI 10.1214/aos/1176325632 | MR 1311979 | Zbl 0821.62020
[15] Schoenberg I. J.: Spline functions and the problem of graduation. Proc. Nat. Acad. Sci. U.S.A. 52 (1964), 947–950 DOI 10.1073/pnas.52.4.947 | MR 0167768 | Zbl 0147.32102
[16] Stone C. J.: Consistent nonparametric regression (with discussion). Ann. Statist. 5 (1977), 595–645 DOI 10.1214/aos/1176343886 | MR 0443204
[17] Stone C. J.: Optimal rates of convergence for nonparametric estimates. Ann. Statist. 8 (1980), 6, 1348–1360 DOI 10.1214/aos/1176345206 | MR 0594650
[18] Stone C. J.: Optimal global rates of convergence for nonparametric regression. Ann. Statist. 10 (1982), 4, 1040–1053 DOI 10.1214/aos/1176345969 | MR 0673642 | Zbl 0511.62048
[19] Strasser H.: Mathematical Theory of Statistics. De Gruyter, Berlin 1985 MR 0812467 | Zbl 0594.62017
[20] Wahba G.: Spline Models for Observational Data. SIAM, Philadelphia 1990 MR 1045442 | Zbl 0813.62001
[21] Watson G. S.: Smooth regression analysis. Sankhya, Ser. A 26 (1964), 359–372 MR 0185765 | Zbl 0137.13002
Partner of
EuDML logo