Previous |  Up |  Next

Article

Title: A note on the rate of convergence of local polynomial estimators in regression models (English)
Author: Liese, Friedrich
Author: Steinke, Ingo
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 37
Issue: 5
Year: 2001
Pages: [585]-603
Summary lang: English
.
Category: math
.
Summary: Local polynomials are used to construct estimators for the value $m(x_{0})$ of the regression function $m$ and the values of the derivatives $D_{\gamma }m(x_{0})$ in a general class of nonparametric regression models. The covariables are allowed to be random or non-random. Only asymptotic conditions on the average distribution of the covariables are used as smoothness of the experimental design. This smoothness condition is discussed in detail. The optimal stochastic rate of convergence of the estimators is established. The results cover the special cases of regression models with i.i.d. errors and the case of observations at an equidistant lattice. (English)
Keyword: nonparametric regression models
Keyword: smoothness condition
MSC: 62G08
MSC: 62G20
MSC: 62J02
idZBL: Zbl 1264.62032
idMR: MR1877076
.
Date available: 2009-09-24T19:42:00Z
Last updated: 2015-03-26
Stable URL: http://hdl.handle.net/10338.dmlcz/135429
.
Reference: [1] Donoho D. L., Liu R. C.: Geometrizing rates of convergence, III.Ann. Statist. 19 (1991), 2, 668–701 Zbl 0754.62029, MR 1105839, 10.1214/aos/1176348115
Reference: [2] Fan J.: Design-adaptive nonparametric regression.J. Amer. Statist. Assoc. 87 (1992), 420, 998–1004 Zbl 0850.62354, MR 1209561
Reference: [3] Fan J.: Local linear regression smoothers and their minimax efficiencies.Ann. Statist. 21 (1993), 196–216 Zbl 0773.62029, MR 1212173, 10.1214/aos/1176349022
Reference: [4] Fan J., Gasser T., Gijbels I., Brockmann, M., Engel J.: Local polynomial regression: Optimal kernels and asymptotic minimax efficiency.Ann. Inst. Statist. Math. 49 (1997), 1, 79–99 Zbl 0890.62032, MR 1450693, 10.1023/A:1003162622169
Reference: [5] Gasser T., Müller H.-G.: Estimating regression functions and their derivatives by the kernel method.Scand. J. Statist. 11 (1984), 171–185 Zbl 0548.62028, MR 0767241
Reference: [6] Hall P.: On convergence rates in nonparametric problems.Internat. Statist. Rev. 57 (1989), 1, 45–58 Zbl 0707.62091, 10.2307/1403583
Reference: [7] Cam L. Le: Asymptotic Methods in Statistical Decision Theory.Springer–Verlag, Berlin 1986 Zbl 0605.62002, MR 0856411
Reference: [8] Liese F., Vajda I.: Convex Statistical Distances.Teubner, Leipzig 1987 Zbl 0656.62004, MR 0926905
Reference: [9] Müller H.-G.: Goodness-of-fit diagnostics for regression models.Scand. J. Statist. 19 (1992), 2, 157–172 Zbl 0760.62037, MR 1173597
Reference: [10] Müller W. G.: Optimal design for local fitting.J. Statist. Plann. Inference 55 (1996), 3, 389–397 Zbl 0866.62048, MR 1422141, 10.1016/S0378-3758(95)00197-2
Reference: [11] Nadaraya E. A.: On estimating regression.Theory Probab. Appl. 9 (1964), 141–142 Zbl 0136.40902
Reference: [12] Park D.: Comparison of two response curve estimators.J. Statist. Comput. Simulation 62 (1999), 3, 259–269 Zbl 0918.62035, MR 1703258, 10.1080/00949659908811935
Reference: [13] Rényi A.: On measures of entropy and information.In: Proc. 4th Berkeley Symp., Berkeley 1961, Vol. 1, pp. 547–561 MR 0132570
Reference: [14] Ruppert D., Wand P.: Multivariate locally weighted least squares regression.Ann. Statist. 22 (1994), 3, 1346–1370 Zbl 0821.62020, MR 1311979, 10.1214/aos/1176325632
Reference: [15] Schoenberg I. J.: Spline functions and the problem of graduation.Proc. Nat. Acad. Sci. U.S.A. 52 (1964), 947–950 Zbl 0147.32102, MR 0167768, 10.1073/pnas.52.4.947
Reference: [16] Stone C. J.: Consistent nonparametric regression (with discussion).Ann. Statist. 5 (1977), 595–645 MR 0443204, 10.1214/aos/1176343886
Reference: [17] Stone C. J.: Optimal rates of convergence for nonparametric estimates.Ann. Statist. 8 (1980), 6, 1348–1360 MR 0594650, 10.1214/aos/1176345206
Reference: [18] Stone C. J.: Optimal global rates of convergence for nonparametric regression.Ann. Statist. 10 (1982), 4, 1040–1053 Zbl 0511.62048, MR 0673642, 10.1214/aos/1176345969
Reference: [19] Strasser H.: Mathematical Theory of Statistics.De Gruyter, Berlin 1985 Zbl 0594.62017, MR 0812467
Reference: [20] Wahba G.: Spline Models for Observational Data.SIAM, Philadelphia 1990 Zbl 0813.62001, MR 1045442
Reference: [21] Watson G. S.: Smooth regression analysis.Sankhya, Ser. A 26 (1964), 359–372 Zbl 0137.13002, MR 0185765
.

Files

Files Size Format View
Kybernetika_37-2001-5_5.pdf 2.483Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo