Previous |  Up |  Next

Article

Keywords:
variational problem; brachistochrone problem; nonlinear optimal control problem
Summary:
A numerical technique for solving the classical brachistochrone problem in the calculus of variations is presented. The brachistochrone problem is first formulated as a nonlinear optimal control problem. Application of this method results in the transformation of differential and integral expressions into some algebraic equations to which Newton-type methods can be applied. The method is general, and yields accurate results.
References:
[1] Balakrishnan A. V., Neustadt L. W.: Computing Methods in Optimization Problems. Academic Press, New York 1964 MR 0167365 | Zbl 0185.00104
[2] Beauchamp K. G.: Walsh Functions and their Applications. Academic Press, New York 1985, pp. 72–86 MR 0462758
[3] Bellman R.: Dynamic Programming. Princeton University Press, N.J. 1957 MR 0090477 | Zbl 1205.90002
[4] Bryson A. E., Ho Y. C.: Applied Optimal Control. Blaisdell Waltham 1969
[5] Chang R. Y., Wang M. L.: Shifted Legendre direct method for variational problems series. J. Optim. Theory Appl. 39 (1983), 299–307 DOI 10.1007/BF00934535 | MR 0693689
[6] Chen C. F., Hsiao C. H.: A Walsh series direct method for solving variational problems. J. Franklin Inst. 300 (1975), 265–280 DOI 10.1016/0016-0032(75)90199-4 | MR 0448874 | Zbl 0339.49017
[7] Dyer P., McReynolds S. R.: The Computation and Theory of Optimal Control. Academic Press, New York 1970 MR 0263490 | Zbl 0256.49002
[8] Horng I. R., Chou J. H.: Shifted Chebyshev direct method for solving variational problems. Internat. J. Systems Sci. 16 (1985), 855–861 DOI 10.1080/00207728508926718 | MR 0804297 | Zbl 0568.49019
[9] Hwang C., Shih Y. P.: Laguerre series direct method for variational problems. J. Optim. Theory Appl. (1983), 143–149 DOI 10.1007/BF00934611 | MR 0693680 | Zbl 0481.49005
[10] Hwang C., Shih Y. P.: Optimal control of delay systems via block pulse functions. J. Optim. Theory Appl. 45 (1985), 101–112 DOI 10.1007/BF00940816 | MR 0778160 | Zbl 0541.93031
[11] Lynch R. T., Reis J. J.: Haar transform image coding. In: Proc. National Telecommun. Conference, Dallas 1976, pp. 44.3–1–44.3
[12] Ohkita M., Kobayashi Y.: An application of rationalized Haar functions to solution of linear differential equations. IEEE Trans. Circuit and Systems 9 (1986), 853–862 DOI 10.1109/TCS.1986.1086019 | Zbl 0613.65072
[13] Ohkita M., Kobayashi Y.: An application of rationalized Haar functions to solution of linear partial differential equations. Math. Comput. Simulation 30 (1988), 419–428 DOI 10.1016/0378-4754(88)90055-9 | MR 0971411 | Zbl 0659.65109
[14] Phillips G. M., Taylor P. J.: Theory and Applications of Numerical Analysis. Academic Press, New York 1973 MR 0343523 | Zbl 0312.65002
[15] Razzaghi M., Nazarzadeh J.: Walsh functions. Wiley Encyclopedia of Electrical and Electronics Engineering 23 (1999), 429–440
[16] Razzaghi M., Ordokhani Y.: An application of rationalized Haar functions for variational problems. Appl. Math. Math. Comput. To appear MR 1842613 | Zbl 1020.49026
[17] Razzaghi M., Razzaghi, M., Arabshahi A.: Solution of convolution integral and fredholm integral equations via double Fourier series. Appl. Math. Math. Comput. 40 (1990), 215–224 DOI 10.1016/0096-3003(90)90065-B | MR 1082397
[18] Reis J. J., Lynch R. T., Butman J.: Adaptive Haar transform video bandwidth reduction system for RPV’s. In: Proc. Ann. Meeting Soc. Photo Optic Inst. Eng. (SPIE), San Diego 1976, pp. 24–35
[19] Tikhomirov V. M.: Stories about maxima and minima. Amer. Math. Soc. (1990), 265–280 MR 1152027 | Zbl 0746.49001
Partner of
EuDML logo