Previous |  Up |  Next

Article

Keywords:
nonlinear system; stabilization problem; feedback; bilinear approximation
Summary:
In this paper, we study the local stabilization problem of a class of planar nonlinear systems by means of an estimated state feedback law. Our approach is to use a bilinear approximation to establish a separation principle.
References:
[1] Baccioti A., Boieri P.: A characterization of single input planar bilinear systems which admit a smooth stabilizer. Systems Control Lett. 16 (1991), 139–143 DOI 10.1016/0167-6911(91)90008-3
[2] Boothby W., Marino R.: Feedback stabilization of planar nonlinear systems. Systems Control Lett. 12 (1989), 87–92 DOI 10.1016/0167-6911(89)90100-X | MR 0979731 | Zbl 0684.93062
[3] Chabour R., Hammouri H.: Stabilization of planar bilinear systems using an observer configuration. Appl. Math. Lett. 6 (1993), 7–10 DOI 10.1016/0893-9659(93)90137-C | MR 1347745 | Zbl 0774.93014
[4] Chabour R., Sallet, G., Vivalda J. C.: Stabilization of nonlinear two dimensional systems: a bilinear approach. Math. Control Signals Systems 9 (1996), 224–246 MR 1358071
[5] Chabour R., Vivalda J. C.: Stabilisation des systemes bilineaires dans le plan par une commande non reguliere. In: Proc. European Control Conference, ECC’91, Grenoble 1991, pp. 485–487 MR 1113096
[6] Čelikovský S.: On the global linearization of bilinear systems. Systems Control Lett. 15 (1990), 433–439 DOI 10.1016/0167-6911(90)90068-6 | MR 1084586 | Zbl 0732.93012
[7] Dayawansa W. P., Martin C. F., Knowles G.: Asymptotic stabilization of a class smooth two-dimensional systems. SIAM J. Control Optim. 28 (1990), 1321–1349 DOI 10.1137/0328070 | MR 1075206
[8] Gauthier J. P., Kupka I.: A separation principle for bilinear systems with dissipative drift. IEEE Trans. Automat. Control AC–37 (1992), 12, 1970–1974 DOI 10.1109/9.182484 | MR 1200614 | Zbl 0778.93102
[9] Hahn W.: Stability of Motion. Springer–Verlag, Berlin 1967 MR 0223668 | Zbl 0189.38503
[10] Hammami M. A.: Stabilization of a class of nonlinear systems using an observer design. In: Proc. 32nd IEEE Conference on Decision and Control, San Antonio 1993, Vol. 3, pp. 1954–1959
[11] Hammami M. A., Jerbi H.: On the stabilization of homogeneous cubic vector fields in the plane. Appl. Math. Lett. 7 (1994), 4, 95–99 DOI 10.1016/0893-9659(94)90019-1 | MR 1350400
[12] Jerbi H.: Quelques resultats sur la stabilization des systèmes non linéaires par estimation et retour d’état. Doctorat de l’université de Metz 1994
[13] Jerbi H., Hammami M. A., Vivalda J. C.: On the stabilization of homogeneous affine systems. In: 2nd IEEE M.S.N.D. Automat. Control, Chania 1994, pp. 319–326
[14] Massera J. L.: Contribution to stability theory. Ann. of Math. 64 (1956), 182–206 DOI 10.2307/1969955 | MR 0079179
[15] Seibert P., Suarez R.: Global stabilization of nonlinear cascade systems. Syst. Control Lett. 14 (1990), 347–352 DOI 10.1016/0167-6911(90)90056-Z | MR 1052644 | Zbl 0699.93073
[16] Vidyasagar M.: On the stabilization of nonlinear systems using state detection. IEEE Trans. Automat. Control AC–25 (1980), 504–509 DOI 10.1109/TAC.1980.1102376 | MR 0571757 | Zbl 0429.93046
Partner of
EuDML logo