[1] Adams W. W., Loustaunau P.:
An introduction to Gröbner bases. (Graduate Studies in Mathematics 3.) Amer. Math. Soc. 1996
MR 1287608 |
Zbl 0803.13015
[2] Assan J., Lafay J. F., Perdon A. M.: An algorithm to compute maximal pre–controllability submodules over a Principal Ideal Domain. In: Proc. IFAC Workshop on Linear Time Delay Systems, Grenoble 1998, pp. 123–128
[3] Assan J., Lafay J. F., Perdon A. M.: Computation of maximal pre-controllability submodules over a Noetherian ring (to appear.
[4] Basile G., Marro G.:
Controlled and Conditioned Invariants in Linear System Theory. Prentice Hall, Englewood Cliffs, N. J. 1992
MR 1149379 |
Zbl 0758.93002
[5] Brewer J. W., Klinger L. C., Schmale W.: The dynamic feedback cyclization problem for Principal Ideal Domains. J. Pure Appl. Algebra (1994), 31–42
[6] Buchberger B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. Ph.D. Thesis, University of Innsbruck, Innsbruck 1965
[10] Conte G., Perdon A. M., Lombardo A.: Block decoupling problem with coefficient assignment and stability for linear systems over Noetherian rings. In: Proc. IFAC Conference on System Structure and Control, Nantes 1998
[12] Dübbelde J., Schmale W.: Normalformproblem und Koefficientenzuweisung bei Systemen über euklidischen Ringen. University of Oldenburg, 1994
[14] Inaba H., Ito N., Munaka T.:
Decoupling and pole assignment for linear systems defined over a Principal Ideal Domain. In: Linear Circuits, Systems and Signal Processing: Theory and Applications (C. I. Byrnes, C. F. Martin, R. E. Saeks, eds.), North Holland, Amsterdam 1988
MR 1031030
[17] Wonham M.:
Linear Multivariable Control: A Geometric Approach. Third edition. Springer–Verlag, New York 1985
MR 0770574 |
Zbl 0609.93001