[1] Attasi S.:
Modeling and recursive estimation for double indexed sequences. In: System Identification: Advances and Case Studies (R. K. Mehra and D. G. Lainiotis, eds.), Academic Press, New York 1976
MR 0688160
[2] Azimi–Sadjadi M. A., Bannour S.:
Two–dimensional recursive parameter identification for adaptive Kalman filtering. IEEE Trans. Circuits and Systems CAS–38 (1991), 1077–1081
DOI 10.1109/31.83878
[3] Azimi–Sadjadi M. R., Khorasani K.:
Reduced order strip Kalman filtering using singular perturbation method. IEEE Trans. Circuits and Systems CAS–37 (1990),284–290
MR 1037361
[4] Barry P. E., Gran R., Waters C. R.: Two–dimensional filtering – a state space approach. In: Proc. of Conference Decision and Control 1976, pp. 613–618
[5] Bedini M. A., Jetto L.:
Realization and performance evaluation of a class of image models for recursive restoration problems. Internat. J. Systems Sci. 22 (1991), 2499–2519
DOI 10.1080/00207729108910810 |
Zbl 0741.93072
[6] Biemond J., Gerbrands J. J.: Comparison of some two–dimensional recursive point–to–point estimators based on a DPCM image model. IEEE Trans. Systems Man Cybernet. SMC–10 (1980), 929–936
[7] Santis A. De, Germani A., Jetto L.: Space-variant recursive restoration of noisy images. IEEE Trans. Circuits and Systems CAS–41 (1994), 249–261
[8] Germani A., Jetto L.:
Image modeling and restoration: a new approach. Circuits Syst. Sign. Process. 7 (1988), 427–457
MR 0982124 |
Zbl 0677.68123
[9] Habibi A.: Two–dimensional bayesian estimate of images. Proc. IEEE 60 (1972), 878–883
[11] Jain A. K., Angel E.:
Image restoration, modeling and reduction of dimensionality. IEEE Trans. Comput. C-23 (1974), 470–476
DOI 10.1109/T-C.1974.223969
[12] Jain A. K., Jain J. R.:
Partial differential equations and finite difference methods in image processing. Part II: Image restoration. IEEE Trans. Automat. Control AC–23 (1978), 817–833
DOI 10.1109/TAC.1978.1101881
[14] Katayama T.:
Estimation of images modeled by a two–dimensional separable autoregressive process. IEEE Trans. Automat. Control AC–26 (1980), 1199–1201
DOI 10.1109/TAC.1980.1102547
[18] Keshavan H. R., Srinath M. D.:
Enhancement of noisy images using an interpolative model in two dimensions. IEEE Trans. Systems Man Cybernet. SMC–8 (1978), 247–259
DOI 10.1109/TSMC.1978.4309945 |
MR 0479633
[19] Liebelt P. B.:
An Introduction to Optimal Estimation. Addison–Wesley, Reading, MA 1967
Zbl 0165.52903
[21] Murphy M. S., Silverman L. M.:
Image model representation and line–by–line recursive restoration. IEEE Trans. Automat. Control AC–23 (1978), 809–816
DOI 10.1109/TAC.1978.1101864
[22] Nahi N. E.: Role of recursive estimation in statistical image enhancement. Proc. IEEE 60 (1972), 872–877
[23] Nahi N. E., Assefi T.:
Bayesian recursive image estimation. IEEE Trans. Comput. C–21 (1972), 734–738
Zbl 0251.93029
[24] Nahi N. E., Franco C. A.:
Recursive image enhancement-vector processing. IEEE Trans. Comm. Com–21 (1973), 305–311
DOI 10.1109/TCOM.1973.1091662
[25] Panda D. P., Kak A. C.: Recursive Filtering of Pictures. Tech. Rep. TR-EE-76, School of Electrical Engineering, Purdue University, Lafayette, Ind., 1976; also in: A. Rosenfield and A. C. Kak: Digital Picture Processing. Chapter 7. Academic Press, New York 1976
[26] Powell S. R., Silverman L. M.:
Modelling of two–dimensional covariance function with application to image enhancement. IEEE Trans. Automat. Control AC–19 (1974), 8–13
DOI 10.1109/TAC.1974.1100483 |
MR 0398656
[27] Strintzis M. G.: Comments on ‘Two-dimensional Bayesian estimate of images’. Proc. IEEE 64 (1976), 1255–1257
[28] Suresh B. R., Shenoi B. A.:
The state–space realization of a certain class of two–dimensional systems with applications to image restoration. Computer Graphics and Image Processing 11 (1979), 101–110
DOI 10.1016/0146-664X(79)90060-1
[29] Suresh B. R., Shenoi B. A.:
New results in two–dimensional Kalman filtering with applications to image restoration. IEEE Trans. Circuits and Systems CAS–28 (1981), 307–319
DOI 10.1109/TCS.1981.1084992
[30] Wellstead P. E., Pinto J. R. Caldas:
Self tuning filters and predictors for two–dimensional systems. Part I: Algorithms. Internat. J. Control 42 (1985), 479–496
DOI 10.1080/00207178508933375
[31] Wellstead P. E., Pinto J. R. Caldas:
Self tuning filters and predictors for two–dimensional systems. Part II: Smoothing applications. Internat. J. Control 42 (1985), 479–496
DOI 10.1080/00207178508933375
[33] Yum Y. H., Park S. B.:
Optimum recursive filtering of noisy two–dimensional data with sequential parameter identification. IEEE Trans. Pattern Anal. Mach. Intell. PAMI–5 (1983), 337–344
DOI 10.1109/TPAMI.1983.4767396
[34] Zou C. T., Plotkin E. I., Swamy M. N. S.:
2-D fast Kalman algorithms for adaptive estimation of nonhomogeneous gaussian Markov random field model. IEEE Trans. Circuits and Systems 41 (1994), 678–692
DOI 10.1109/82.329738