Previous |  Up |  Next

Article

Keywords:
minimum variance property; finite-dimensional filter; Gaussian random field; 2D recursive filters; strip processing; image pixels
Summary:
The purpose of this paper is to prove the minimum variance property of a new class of 2D, recursive, finite-dimensional filters. The filtering algorithms are derived from general basic assumptions underlying the stochastic modelling of an image as a 2D gaussian random field. An appealing feature of the proposed algorithms is that the image pixels are estimated one at a time; this makes it possible to save computation time and memory requirement with respect to the filtering procedures based on strip processing. Experimental results show the effectiveness of the new filtering schemes.
References:
[1] Attasi S.: Modeling and recursive estimation for double indexed sequences. In: System Identification: Advances and Case Studies (R. K. Mehra and D. G. Lainiotis, eds.), Academic Press, New York 1976 MR 0688160
[2] Azimi–Sadjadi M. A., Bannour S.: Two–dimensional recursive parameter identification for adaptive Kalman filtering. IEEE Trans. Circuits and Systems CAS–38 (1991), 1077–1081 DOI 10.1109/31.83878
[3] Azimi–Sadjadi M. R., Khorasani K.: Reduced order strip Kalman filtering using singular perturbation method. IEEE Trans. Circuits and Systems CAS–37 (1990),284–290 MR 1037361
[4] Barry P. E., Gran R., Waters C. R.: Two–dimensional filtering – a state space approach. In: Proc. of Conference Decision and Control 1976, pp. 613–618
[5] Bedini M. A., Jetto L.: Realization and performance evaluation of a class of image models for recursive restoration problems. Internat. J. Systems Sci. 22 (1991), 2499–2519 DOI 10.1080/00207729108910810 | Zbl 0741.93072
[6] Biemond J., Gerbrands J. J.: Comparison of some two–dimensional recursive point–to–point estimators based on a DPCM image model. IEEE Trans. Systems Man Cybernet. SMC–10 (1980), 929–936
[7] Santis A. De, Germani A., Jetto L.: Space-variant recursive restoration of noisy images. IEEE Trans. Circuits and Systems CAS–41 (1994), 249–261
[8] Germani A., Jetto L.: Image modeling and restoration: a new approach. Circuits Syst. Sign. Process. 7 (1988), 427–457 MR 0982124 | Zbl 0677.68123
[9] Habibi A.: Two–dimensional bayesian estimate of images. Proc. IEEE 60 (1972), 878–883
[10] Jain A. K.: Partial differential equations and finite–difference methods in image processing. Part I: Image representation. J. Optim. Theory Appl. 23 (1977), 65–91 DOI 10.1007/BF00932298 | MR 1551580 | Zbl 0341.60022
[11] Jain A. K., Angel E.: Image restoration, modeling and reduction of dimensionality. IEEE Trans. Comput. C-23 (1974), 470–476 DOI 10.1109/T-C.1974.223969
[12] Jain A. K., Jain J. R.: Partial differential equations and finite difference methods in image processing. Part II: Image restoration. IEEE Trans. Automat. Control AC–23 (1978), 817–833 DOI 10.1109/TAC.1978.1101881
[13] Katayama T.: Restoration of noisy images using a two–dimensional linear model. IEEE Trans. Systems Man Cybernet. SMC–9 (1979), 711–717 DOI 10.1109/TSMC.1979.4310110 | Zbl 0425.93039
[14] Katayama T.: Estimation of images modeled by a two–dimensional separable autoregressive process. IEEE Trans. Automat. Control AC–26 (1980), 1199–1201 DOI 10.1109/TAC.1980.1102547
[15] Katayama T., Kosaka M.: Recursive filtering algorithm for a two–dimensional system. IEEE Trans. Automat. Control AC–24 (1979), 130–132 DOI 10.1109/TAC.1979.1101956 | Zbl 0393.93048
[16] Kaufman H., Woods J. W., Dravida S., Tekalp A. M.: Estimation and identification of two–dimensional images. IEEE Trans. Automat. Control AC–28 (1983), 745–756 DOI 10.1109/TAC.1983.1103311 | Zbl 0512.93069
[17] Keshavan H. R., Srinath M. D.: Sequential estimation technique for enhancement of noisy images. IEEE Trans. Comput. C–26 (1977), 971–987 DOI 10.1109/TC.1977.1674732 | Zbl 0372.94005
[18] Keshavan H. R., Srinath M. D.: Enhancement of noisy images using an interpolative model in two dimensions. IEEE Trans. Systems Man Cybernet. SMC–8 (1978), 247–259 DOI 10.1109/TSMC.1978.4309945 | MR 0479633
[19] Liebelt P. B.: An Introduction to Optimal Estimation. Addison–Wesley, Reading, MA 1967 Zbl 0165.52903
[20] Murphy M. S.: Comments on ‘Recursive filtering algorithm for a two–dimensional system’. IEEE Trans. Automat. Control AC–25 (1980), 336–338 DOI 10.1109/TAC.1980.1102265 | Zbl 0437.93037
[21] Murphy M. S., Silverman L. M.: Image model representation and line–by–line recursive restoration. IEEE Trans. Automat. Control AC–23 (1978), 809–816 DOI 10.1109/TAC.1978.1101864
[22] Nahi N. E.: Role of recursive estimation in statistical image enhancement. Proc. IEEE 60 (1972), 872–877
[23] Nahi N. E., Assefi T.: Bayesian recursive image estimation. IEEE Trans. Comput. C–21 (1972), 734–738 Zbl 0251.93029
[24] Nahi N. E., Franco C. A.: Recursive image enhancement-vector processing. IEEE Trans. Comm. Com–21 (1973), 305–311 DOI 10.1109/TCOM.1973.1091662
[25] Panda D. P., Kak A. C.: Recursive Filtering of Pictures. Tech. Rep. TR-EE-76, School of Electrical Engineering, Purdue University, Lafayette, Ind., 1976; also in: A. Rosenfield and A. C. Kak: Digital Picture Processing. Chapter 7. Academic Press, New York 1976
[26] Powell S. R., Silverman L. M.: Modelling of two–dimensional covariance function with application to image enhancement. IEEE Trans. Automat. Control AC–19 (1974), 8–13 DOI 10.1109/TAC.1974.1100483 | MR 0398656
[27] Strintzis M. G.: Comments on ‘Two-dimensional Bayesian estimate of images’. Proc. IEEE 64 (1976), 1255–1257
[28] Suresh B. R., Shenoi B. A.: The state–space realization of a certain class of two–dimensional systems with applications to image restoration. Computer Graphics and Image Processing 11 (1979), 101–110 DOI 10.1016/0146-664X(79)90060-1
[29] Suresh B. R., Shenoi B. A.: New results in two–dimensional Kalman filtering with applications to image restoration. IEEE Trans. Circuits and Systems CAS–28 (1981), 307–319 DOI 10.1109/TCS.1981.1084992
[30] Wellstead P. E., Pinto J. R. Caldas: Self tuning filters and predictors for two–dimensional systems. Part I: Algorithms. Internat. J. Control 42 (1985), 479–496 DOI 10.1080/00207178508933375
[31] Wellstead P. E., Pinto J. R. Caldas: Self tuning filters and predictors for two–dimensional systems. Part II: Smoothing applications. Internat. J. Control 42 (1985), 479–496 DOI 10.1080/00207178508933375
[32] Woods J. W., Radewan C. H.: Kalman filtering in two dimensions. IEEE Trans. Inform. Theory IT–23 (1977), 809–816 DOI 10.1109/TIT.1977.1055750 | MR 0469460 | Zbl 0361.93053
[33] Yum Y. H., Park S. B.: Optimum recursive filtering of noisy two–dimensional data with sequential parameter identification. IEEE Trans. Pattern Anal. Mach. Intell. PAMI–5 (1983), 337–344 DOI 10.1109/TPAMI.1983.4767396
[34] Zou C. T., Plotkin E. I., Swamy M. N. S.: 2-D fast Kalman algorithms for adaptive estimation of nonhomogeneous gaussian Markov random field model. IEEE Trans. Circuits and Systems 41 (1994), 678–692 DOI 10.1109/82.329738
Partner of
EuDML logo