[1] Boyd S., Ghaoui L. EL, Feron E., Balakrishnan V.:
Linear matrix inequalities in system and control theory. SIAM Stud. Appl. Math. 1994
MR 1284712 |
Zbl 0816.93004
[4] Fattouh A., Sename O., Dion J.-M.: $H_{\infty }$ Observer design for time–delay systems. In: Proc. of the 37th IEEE Conference on Decision and Control, Tampa 1998, pp. 4545–4546
[5] Fattouh A., Sename O., Dion J.-M.: $\alpha $–decay rate observer design for linear systems with delayed state. In: Proc. of the 8th European Control Conference, Karlsruhe 1999
[7] Khargonekar P. P., Petersen I. R., Zhou K.:
Robust stabilization of uncertain linear systems: Quadratic stabilizability and $H_\infty $ control theory. IEEE Trans. Automat. Control 35 (1990), 356–361
DOI 10.1109/9.50357 |
MR 1044036
[8] Kolmanovskii V. B., Nosov V. R.:
Stability of Functional Differential Equation. Academic Press, New York 1986
MR 0860947
[10] Lee J. H., Kim S. W., Kwon W. H.:
Memoryless $H^{\infty }$ controllers for state delayed systems. IEEE Trans. Automat. Control 39 (1994), 159–162
DOI 10.1109/9.273356 |
MR 1258692
[11] Niculescu S. I., Trofino–Neto A., Dion J.-M., Dugard L.: Delay–dependent stability of linear systems with delayed state: An L. M.I. approach. In: Proc. of the 34th Conference on Decision and Control, New Orleans 1995, pp. 1495–1496
[13] Petersen I. R., Anderson B. D. O., Jonckheere E. A.:
A first principles solution to the non–singular $H^\infty $ control problem. Internat. J. Robust and Nonlinear Control 1 (1991), 171–185
DOI 10.1002/rnc.4590010304
[17] Yao Y. X., Zhang Y. M., Kovacevic R.: Parameterization of observers for time delay systems and its application in observer design. IEE Proc. Control Theory Appl. 143 (1996), 225–232
[18] Zhou K., Doyle J. C., Glover K.:
Robust and Optimal Control. Prentice–Hall, Englewood Cliffs, N. J. 1996
Zbl 0999.49500