Previous |  Up |  Next

Article

Keywords:
linear system; time delay; Riccati equation; robust observer design
Summary:
In this paper, a method for $H_\infty $ observer design for linear systems with multiple delays in state and output variables is proposed. The designing method involves attenuating of the disturbance to a pre-specified level. The observer design requires solving certain algebraic Riccati equation. An example is given in order to illustrate the proposed method.
References:
[1] Boyd S., Ghaoui L. EL, Feron E., Balakrishnan V.: Linear matrix inequalities in system and control theory. SIAM Stud. Appl. Math. 1994 MR 1284712 | Zbl 0816.93004
[2] Choi H. H., Chung M. J.: Observer–based $H_{\infty }$ controller design for state delayed linear systems. Automatica 32 (1996), 1073–1075 DOI 10.1016/0005-1098(96)00014-3 | MR 1405466
[3] Choi H. H., Chung M. J.: An LMI approach to $H_{\infty }$ controller design for linear time–delay systems. Automatica 33 (1997), 737–739 DOI 10.1016/S0005-1098(96)00242-7 | MR 1448971
[4] Fattouh A., Sename O., Dion J.-M.: $H_{\infty }$ Observer design for time–delay systems. In: Proc. of the 37th IEEE Conference on Decision and Control, Tampa 1998, pp. 4545–4546
[5] Fattouh A., Sename O., Dion J.-M.: $\alpha $–decay rate observer design for linear systems with delayed state. In: Proc. of the 8th European Control Conference, Karlsruhe 1999
[6] Furukawa T., Shimemura E.: Stabilizability conditions by memoryless feedback for linear systems with time-delay. Internat. J. Control. 37 (1983), 553–565 DOI 10.1080/00207178308932992 | MR 0703298 | Zbl 0503.93050
[7] Khargonekar P. P., Petersen I. R., Zhou K.: Robust stabilization of uncertain linear systems: Quadratic stabilizability and $H_\infty $ control theory. IEEE Trans. Automat. Control 35 (1990), 356–361 DOI 10.1109/9.50357 | MR 1044036
[8] Kolmanovskii V. B., Nosov V. R.: Stability of Functional Differential Equation. Academic Press, New York 1986 MR 0860947
[9] Lee E. B., Olbrot A.: Observability and related structural results for linear hereditary systems. Internat. J. Control. 34 (1981), 1061–1078 DOI 10.1080/00207178108922582 | MR 0643872 | Zbl 0531.93015
[10] Lee J. H., Kim S. W., Kwon W. H.: Memoryless $H^{\infty }$ controllers for state delayed systems. IEEE Trans. Automat. Control 39 (1994), 159–162 DOI 10.1109/9.273356 | MR 1258692
[11] Niculescu S. I., Trofino–Neto A., Dion J.-M., Dugard L.: Delay–dependent stability of linear systems with delayed state: An L. M.I. approach. In: Proc. of the 34th Conference on Decision and Control, New Orleans 1995, pp. 1495–1496
[12] Pearson A. E., Fiagbedzi Y. A.: An observer for time lag systems. IEEE Trans. Automat. Control 34 (1989), 775–777 DOI 10.1109/9.29412 | MR 1000675 | Zbl 0687.93011
[13] Petersen I. R., Anderson B. D. O., Jonckheere E. A.: A first principles solution to the non–singular $H^\infty $ control problem. Internat. J. Robust and Nonlinear Control 1 (1991), 171–185 DOI 10.1002/rnc.4590010304
[14] Ramos J. L., Pearson A. E.: An asymptotic modal observer for linear autonomous time lag systems. IEEE Trans. Automat. Control 40 (1995), 1291–1294 DOI 10.1109/9.400473 | MR 1344050 | Zbl 0825.93084
[15] Watanabe K.: Finite spectrum assignment and observer for multivariable systems with commensurate delays. IEEE Trans. Automat. Control 31 (1986), 543–550 DOI 10.1109/TAC.1986.1104336 | MR 0839083 | Zbl 0596.93009
[16] Watanabe K., Ouchi T.: An observer of systems with delays in state variables. Internat. J. Control 41 (1985), 217–229 DOI 10.1080/0020718508961121 | MR 0775229
[17] Yao Y. X., Zhang Y. M., Kovacevic R.: Parameterization of observers for time delay systems and its application in observer design. IEE Proc. Control Theory Appl. 143 (1996), 225–232
[18] Zhou K., Doyle J. C., Glover K.: Robust and Optimal Control. Prentice–Hall, Englewood Cliffs, N. J. 1996 Zbl 0999.49500
Partner of
EuDML logo