[1] J. Bear: Dynamics of Fluids in Porous Media. Dover, New York, 1972.
[2] F. Brezzi, J. Douglas, Jr., R. Durán, and M. Fortin:
Mixed finite elements for second order elliptic problems in three variables. Numer. Math. 51 (1987), 237–250.
DOI 10.1007/BF01396752 |
MR 0890035
[3] F. Brezzi, J. Douglas, Jr., M. Fortin, and L. Marini:
Efficient rectangular mixed finite elements in two and three space variables. RAIRO Modèl. Math. Anal. Numér 21 (1987), 581–604.
DOI 10.1051/m2an/1987210405811 |
MR 0921828
[4] F. Brezzi, J. Douglas, Jr., and L. Marini:
Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47 (1985), 217–235.
DOI 10.1007/BF01389710 |
MR 0799685
[5] M. Celia and P. Binning: Two-phase unsaturated flow: one dimensional simulation and air phase velocities. Water Resources Research 28 (1992), 2819–2828.
[6] G. Chavent and J. Jaffré: Mathematical Models and Finite Elements for Reservoir Simulation. North-Holland, Amsterdam, 1978.
[8] Z. Chen: Finite element methods for the black oil model in petroleum reservoirs. IMA Preprint Series $\#$ 1238, submitted to Math. Comp.
[9] Z. Chen and J. Douglas, Jr.:
Approximation of coefficients in hybrid and mixed methods for nonlinear parabolic problems. Mat. Aplic. Comp. 10 (1991), 137–160.
MR 1172090
[10] Z. Chen and J. Douglas, Jr.:
Prismatic mixed finite elements for second order elliptic problems. Calcolo 26 (1989), 135–148.
DOI 10.1007/BF02575725 |
MR 1083050
[11] Z. Chen, R. Ewing, and M. Espedal: Multiphase flow simulation with various boundary conditions. Numerical Methods in Water Resources, Vol. 2, A. Peters, et als. (eds.), Kluwer Academic Publishers, Netherlands, 1994, pp. 925–932.
[13] P. Ciarlet:
The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978.
MR 0520174 |
Zbl 0383.65058
[16] J. Douglas, Jr. and J. Roberts:
Global estimates for mixed methods for second order elliptic problems. Math. Comp. 45 (1985), 39–52.
MR 0771029
[17] N. S. Espedal and R. E. Ewing:
Characteristic Petrov-Galerkin subdomain methods for two phase immiscible flow. Comput. Methods Appl. Mech. Eng. 64 (1987), 113–135.
DOI 10.1016/0045-7825(87)90036-3 |
MR 0912516
[18] R. Ewing and M. Wheeler:
Galerkin methods for miscible displacement problems with point sources and sinks-unit mobility ratio case. Mathematical Methods in Energy Research, K. I. Gross, ed., Society for Industrial and Applied Mathematics, Philadelphia, 1984, pp. 40–58.
MR 0790511
[19] K. Fadimba and R. Sharpley:
A priori estimates and regularization for a class of porous medium equations. Preprint, submitted to Nonlinear World.
MR 1376946
[20] K. Fadimba and R. Sharpley:
Galerkin finite element method for a class of porous medium equations. Preprint.
MR 2025071
[21] D. Hillel: Fundamentals of Soil Physics. Academic Press, San Diego, California, 1980.
[25] J. Nitsche:
$L_\infty $-Convergence of Finite Element Approximation. Proc. Second Conference on Finite Elements, Rennes, France, 1975.
MR 0568857
[26] D. W. Peaceman: Fundamentals of Numerical Reservoir Simulation. Elsevier, New York, 1977.
[27] O. Pironneau:
On the transport-diffusion algorithm and its application to the Navier-Stokes equations. Numer. Math. 38 (1982), 309–332.
DOI 10.1007/BF01396435 |
MR 0654100
[28] P.A. Raviart and J.M. Thomas:
A mixed finite element method for second order elliptic problems. Lecture Notes in Math. 606, Springer, Berlin, 1977, pp. 292–315.
MR 0483555
[30] A. Schatz, V. Thomée, and L. Wahlbin:
Maximum norm stability and error estimates in parabolic finite element equations. Comm. Pure Appl. Math. 33 (1980), 265–304.
DOI 10.1002/cpa.3160330305 |
MR 0562737
[31] R. Scott:
Optimal $L^\infty $ estimates for the finite element method on irregular meshes. Math. Comp. 30 (1976), 681–697.
MR 0436617
[32] D. Smylie: A near optimal order approximation to a class of two sided nonlinear degenerate parabolic partial differential equations. Ph. D. Thesis, University of Wyoming, 1989.
[32] M. F. Wheeler:
A priori $L_2$ error estimates for Galerkin approximation to parabolic partial differential equations. SIAM J. Numer. Anal. 10 (1973), 723–759.
DOI 10.1137/0710062 |
MR 0351124