[LIT1] D.N. Arnold, F. Brezzi:
Mixed and nonconforming finite element methods: implementation, post-processing and error estimates. $ M^2AN $ Math. Modelling Numer. Anal. 19, 7–35 (1985).
DOI 10.1051/m2an/1985190100071 |
MR 0813687
[LIT2] I. Babuska, W.C. Rheinboldt:
Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15, 736–754 (1978).
DOI 10.1137/0715049 |
MR 0483395
[LIT3] I. Babuska, W.C. Rheinboldt:
A posteriori error estimates for the finite element method. Int. J. Numer. Methods Eng. 12, 1597–1615 (1978).
DOI 10.1002/nme.1620121010
[LIT4] R.E. Bank:
PLTMG—A Software Package for Solving Elliptic Partial Differential Equations. User’s Guide 6.0. SIAM, Philadelphia, 1990.
MR 1052151
[LIT5] R.E. Bank, A.H. Sherman, A. Weiser:
Refinement algorithm and data structures for regular local mesh refinement. Scientific Computing, R. Stepleman et al. (eds.), IMACS North-Holland, Amsterdam, 1983, pp. 3–17.
MR 0751598
[LIT8] F. Bornemann, B. Erdmann, Kornhuber: A posteriori error estimates for elliptic problems in two and three space dimensions. Konrad-Zuse-Zentrum für Informationstechnik Berlin. Preprint SC 93–29, 1993.
[LIT7] F. Bornemann, H. Yserentant:
A basic norm equivalence for the theory of multilevel methods. Numer. Math. 64, 445–476 (1993).
DOI 10.1007/BF01388699 |
MR 1213412
[LIT9] D. Braess, R. Verfürth: A posteriori error estimators for the Raviart-Thomas element. Ruhr-Universität Bochum, Fakultät für Mathematik, Bericht Nr. 175, 1994.
[LIT11] F. Brezzi, M. Fortin:
Mixed and Hybrid Finite Element Methods. Springer, Berlin-Heidelberg-New York, 1991.
MR 1115205
[LIT12] Z. Cai, C.I. Goldstein, J. Pasciak:
Multilevel iteration for mixed finite element systems with penalty. SIAM J. Sci. Comput. 14, 1072–1088 (1993).
DOI 10.1137/0914065 |
MR 1232176
[LIT13] L.C. Cowsar: Domain decomposition methods for nonconforming finite element spaces of Lagrange-type. Rice University, Houston. Preprint TR 93–11, 1993.
[LIT14] P. Deuflhard, P. Leinen, H. Yserentant:
Concepts of an adaptive hierarchical finite element code. IMPACT Comput. Sci. Engrg. 1, 3–35 (1989).
DOI 10.1016/0899-8248(89)90018-9
[LIT15] R.E. Ewing, J. Wang:
The Schwarz algorithm and multilevel decomposition iterative techniques for mixed finite element methods. Proc. 5th Int. Symp. on Domain Decomposition Methods for Partial Differential Equations, D.F. Keyes et al. (eds.), SIAM, Philadelphia, 1992, pp. 48–55.
MR 1189562
[LIT16] R.E. Ewing, J. Wang:
Analysis of the Schwarz algorithm for mixed finite element methods. $ M^2AN $ Math. Modelling and Numer. Anal. 26, 739–756 (1992).
DOI 10.1051/m2an/1992260607391 |
MR 1183415
[LIT17] R.E. Ewing, J. Wang:
Analysis of multilevel decomposition iterative methods for mixed finite element methods. $ M^2AN $ Math. Modelling and Numer. Anal. 28, 377–398 (1994).
DOI 10.1051/m2an/1994280403771 |
MR 1288504
[LIT18] B. Fraeijs de Veubeke: Displacement and equilibrium models in the finite element method. Stress Analysis, C. Zienkiewicz and G. Holister (eds.), John Wiley and Sons, New York, 1965.
[LIT19] R.H.W. Hoppe, B. Wohlmuth: Element-oriented and edge-oriented local error estimators for nonconforming finite elements methods. Submitted to $ M^2 AN $ Math. Modelling and Numer. Anal.
[LIT20] R.H.W. Hoppe, B. Wohlmuth:
Adaptive multilevel techniques for mixed finite element discretizations of elliptic boundary value problems. Submitted to SIAM J. Numer. Anal.
MR 1461801
[LIT21] R.H.W. Hoppe, B. Wohlmuth: Adaptive iterative solution of mixed finite element discretizations using multilevel subspace decompositions and a flux-oriented error estimator. In preparation.
[LIT23] J. Roberts, J.M. Thomas:
Mixed and hybrid methods. Handbook of Numerical Analysis, P.G. Ciarlet and J.L. Lions (eds.), Vol.II, Finite Element Methods (Part 1), North-Holland, Amsterdam, 1989.
MR 1115239
[LIT24] P.S. Vassilevski, J. Wang:
Multilevel iterative methods for mixed finite elements discretizations of elliptic problems. Numer. Math. 63, 503–520 (1992).
DOI 10.1007/BF01385872 |
MR 1189534
[LIT25] R. Verfürth: A review of a posteriori error estimation and adaptive mesh-refinement techniques. Manuscript, 1993.
[LIT26] B. Wohlmuth, R.H.W. Hoppe: Multilevel approaches to nonconforming finite elements discretizations of linear second order elliptic boundary value problems. To appear in Journal of Computation and Information.