Previous |  Up |  Next

Article

Keywords:
finite volume method; Euler equations; Riemann problem
Summary:
A high resolution finite volume method for the computation of unsteady solutions of the Euler equations in two space dimensions is presented and validated. The scheme is of Godunov-type. The first order part of the flux function uses the approximate Riemann problem solver of Pandolfi and here a new derivation of this solver is presented. This construction paves the way to understand the conditions under which the scheme satisfies an entropy condition. The extension to higher order is done by applying ideas of LeVeque to the approximate Riemann problem solution. A detailed validation of the scheme is done on one and two dimensional test problems.
References:
[1] J.D. Anderson: Modern Compressible Flow. McGraw-Hill Book Company, 1982.
[2] J.G. Andrews: Spurious entropy generation as a mesh quality indicator. Report Number 93/12, Oxford University Computing Laboratory, Numerical Analysis Group, 1993.
[3] N. Botta: Numerical investigations of two-dimensional Euler flows. PhD thesis, submitted to the Swiss Federal Institute of Technology, 1994.
[4] N. Botta and J. Sesterhenn: Deficiencies in the numerical computation of nozzle flow. Research Report No. 92-05, Seminar für Angewandte Mathematik, ETH Zürich, 1992.
[5] S.-H. Chang and M.-S. Liou: A numerical study of ENO and TVD schemes for shock capturing. NASA Technical Memorandum 101355, ICOMP-88-18, 1988.
[6] A. Dervieux, B. Van Leer, J. Periaux and A. Rizzi, editors: Numerical simulation of compressible Euler flows. Notes on Numerical Fluid Mechanics, volume 26, Proceedings of the GAMM Workshop on Numerical simulation of compressible Euler flows, held at INRIA, Rocquencourt, June 10–13, 1986, Vieweg Verlag, 1989. MR 1173681
[7] P.G. Drazin and W.H. Reid: Hydrodynamic Stability. Cambridge University Press, Cambridge, 1981. MR 0604359
[8] S.K. Godunov: Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics. Mat. Sbornik 47 (1959). (Russian) MR 0119433
[9] R.J. LeVeque: Hyperbolic conservation laws and numerical methods. Technical Report No. 90-3, University of Washington, 1990.
[10] R.J. LeVeque: Simplified multi-dimensional flux limiter methods. Zbl 0801.76069
[11] A. DiMascio: Simulazione di flussi vorticosi mediante il modello di fluido compressible non viscoso. PhD thesis, Universitá “La Sapienza”, Roma, Italy, 1992.
[12] G. Moretti: The $\lambda $-scheme. Comput. Fluids 7 (1979), 191–205. MR 0549494 | Zbl 0419.76034
[13] G. Moretti: A technique for integrating two-dimensional Euler equations. Comput. Fluids 15 (1987), no. 1, 59–75. DOI 10.1016/0045-7930(87)90005-3 | MR 0900818 | Zbl 0615.65127
[14] G. Moretti and M. Pandolfi: Critical study of calculations of subsonic flows in ducts. AIAA Journ. 19 (1981), 449–457. DOI 10.2514/3.7787
[15] M. Pandolfi: A contribution to the numerical prediction of unsteady flows. AIAA Journ. 22 (1984), no. 5, 602. DOI 10.2514/3.48491 | Zbl 0542.76090
[16] P.L. Roe: Some contributions to the modeling of discontinuous flows. Lecture Notes in Appl. Math. 22 (1985), 163–193. MR 0818787
[17] C.W. Schulz-Rinne: The Riemann problem for two-dimensional gas dynamics and new limiters for high-order schemes. PhD thesis, Swiss Federal Institute of Technology, Diss. ETH No. 10297, 1993. MR 1262404
[18] G. Strang: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5 (1968), 506–517. DOI 10.1137/0705041 | MR 0235754
[19] P.R. Woodward and P. Colella: The numerical simulation of two dimensional fluid flow with strong shocks. J. Comput. Phys. 54 (1984), 115–173. DOI 10.1016/0021-9991(84)90142-6 | MR 0748569
Partner of
EuDML logo