Previous |  Up |  Next

Article

Keywords:
implicit variational inclusions; maximal relaxed accretive mapping; $A$-maximal accretive mapping; generalized resolvent operator
Summary:
A class of existence theorems in the context of solving a general class of nonlinear implicit inclusion problems are examined based on $A$-maximal relaxed accretive mappings in a real Banach space setting.
References:
[1] Dhage, B. C., Verma, R. U.: Second order boundary value problems of discontinuous differential inclusions. Comm. Appl. Nonlinear Anal. 12 (3) (2005), 37–44. MR 2142916 | Zbl 1088.34505
[2] Fang, Y. P., Huang, N. J.: $H$-accretive operators and resolvent operator technique for solving variational inclusions in Banach spaces. Appl. Math. Lett. 17 (2004), 647–653. DOI 10.1016/S0893-9659(04)90099-7 | MR 2064175 | Zbl 1056.49012
[3] Fang, Y. P., Huang, N. J., Thompson, H. B.: A new system of variational inclusions with $(H,\eta )$-monotone operators. Comput. Math. Appl. 49 (2–3) (2005), 365–374. DOI 10.1016/j.camwa.2004.04.037 | MR 2123413 | Zbl 1068.49003
[4] Huang, N. J., Fang, Y. P., Cho, Y. J.: Perturbed three-step approximation processes with errors for a class of general implicit variational inclusions. J. Nonlinear Convex Anal. 4 (2) (2003), 301–308. MR 1999271 | Zbl 1028.49006
[5] Lan, H. Y., Cho, Y. J., Verma, R. U.: Nonlinear relaxed cocoercive variational inclusions involving $(A,\eta )$-accretive mappings in Banach spaces. Comput. Math. Appl. 51 (2006), 1529–1538. DOI 10.1016/j.camwa.2005.11.036 | MR 2237649 | Zbl 1207.49011
[6] Lan, H. Y., Kim, J. H., Cho, Y. J.: On a new class of nonlinear $A$-monotone multivalued variational inclusions. J. Math. Anal. Appl. 327 (1) (2007), 481–493. DOI 10.1016/j.jmaa.2005.11.067 | MR 2277428
[7] Peng, J. W.: Set-valued variational inclusions with T-accretive operators in Banach spaces. Appl. Math. Lett. 19 (2006), 273–282. DOI 10.1016/j.aml.2005.04.009 | MR 2202416 | Zbl 1102.47050
[8] Verma, R. U.: On a class of nonlinear variational inequalities involving partially relaxed monotone and partially strongly monotone mappings. Math. Sci. Res. Hot-Line 4 (2) (2000), 55–63. MR 1742730 | Zbl 1054.49010
[9] Verma, R. U.: $A$-monotonicity and its role in nonlinear variational inclusions. J. Optim. Theory Appl. 129 (3) (2006), 457–467. DOI 10.1007/s10957-006-9079-7 | MR 2281151 | Zbl 1123.49007
[10] Verma, R. U.: Averaging techniques and cocoercively monotone mappings. Math. Sci. Res. J. 10 (3) (2006), 79–82. MR 2231178 | Zbl 1152.49011
[11] Verma, R. U.: General system of $A$-monotone nonlinear variational inclusion problems. J. Optim. Theory Appl. 131 (1) (2006), 151–157. DOI 10.1007/s10957-006-9133-5 | MR 2278302 | Zbl 1107.49012
[12] Verma, R. U.: Sensitivity analysis for generalized strongly monotone variational inclusions based on the $(A,\eta )$-resolvent operator technique. Appl. Math. Lett. 19 (2006), 1409–1413. DOI 10.1016/j.aml.2006.02.014 | MR 2264199 | Zbl 1133.49014
[13] Verma, R. U.: $A$-monotone nonlinear relaxed cocoercive variational inclusions. Cent. Eur. J. Math. 5 (2) (2007), 1–11. DOI 10.2478/s11533-007-0005-5 | MR 2300280 | Zbl 1128.49011
[14] Verma, R. U.: General system of $(A,\eta )$-monotone variational inclusion problems based on generalized hybrid algorithm. Nonlinear Anal. Hybrid Syst. 1 (3) (2007), 326–335. MR 2339479
[15] Verma, R. U.: Aproximation solvability of a class of nonlinear set-valued inclusions involving $(A,\eta )$-monotone mappings. J. Math. Anal. Appl. 337 (2008), 969–975. DOI 10.1016/j.jmaa.2007.01.114 | MR 2386346
[16] Verma, R. U.: Rockafellar’s celebrated theorem based on $A$-maximal monotonicity design. Appl. Math. Lett. 21 (2008), 355–360. DOI 10.1016/j.aml.2007.05.004 | MR 2406513 | Zbl 1148.47039
[17] Xu, H. K.: Iterative algorithms for nonlinear operators. J. London Math. Soc. (2) 66 (2002), 240–256. DOI 10.1112/S0024610702003332 | MR 1911872 | Zbl 1013.47032
[18] Zeidler, E.: Nonlinear Functional Analysis and its Applications I. Springer-Verlag, New York, 1986. MR 0816732 | Zbl 0583.47050
[19] Zeidler, E.: Nonlinear Functional Analysis and its Applications II/A. Springer-Verlag, New York, 1990. MR 1033497 | Zbl 0684.47028
[20] Zeidler, E.: Nonlinear Functional Analysis and its Applications II/B. Springer-Verlag, New York, 1990. MR 1033498 | Zbl 0684.47029
Partner of
EuDML logo