[1] Dhage, B. C., Verma, R. U.:
Second order boundary value problems of discontinuous differential inclusions. Comm. Appl. Nonlinear Anal. 12 (3) (2005), 37–44.
MR 2142916 |
Zbl 1088.34505
[4] Huang, N. J., Fang, Y. P., Cho, Y. J.:
Perturbed three-step approximation processes with errors for a class of general implicit variational inclusions. J. Nonlinear Convex Anal. 4 (2) (2003), 301–308.
MR 1999271 |
Zbl 1028.49006
[6] Lan, H. Y., Kim, J. H., Cho, Y. J.:
On a new class of nonlinear $A$-monotone multivalued variational inclusions. J. Math. Anal. Appl. 327 (1) (2007), 481–493.
DOI 10.1016/j.jmaa.2005.11.067 |
MR 2277428
[8] Verma, R. U.:
On a class of nonlinear variational inequalities involving partially relaxed monotone and partially strongly monotone mappings. Math. Sci. Res. Hot-Line 4 (2) (2000), 55–63.
MR 1742730 |
Zbl 1054.49010
[10] Verma, R. U.:
Averaging techniques and cocoercively monotone mappings. Math. Sci. Res. J. 10 (3) (2006), 79–82.
MR 2231178 |
Zbl 1152.49011
[14] Verma, R. U.:
General system of $(A,\eta )$-monotone variational inclusion problems based on generalized hybrid algorithm. Nonlinear Anal. Hybrid Syst. 1 (3) (2007), 326–335.
MR 2339479
[15] Verma, R. U.:
Aproximation solvability of a class of nonlinear set-valued inclusions involving $(A,\eta )$-monotone mappings. J. Math. Anal. Appl. 337 (2008), 969–975.
DOI 10.1016/j.jmaa.2007.01.114 |
MR 2386346
[18] Zeidler, E.:
Nonlinear Functional Analysis and its Applications I. Springer-Verlag, New York, 1986.
MR 0816732 |
Zbl 0583.47050
[19] Zeidler, E.:
Nonlinear Functional Analysis and its Applications II/A. Springer-Verlag, New York, 1990.
MR 1033497 |
Zbl 0684.47028
[20] Zeidler, E.:
Nonlinear Functional Analysis and its Applications II/B. Springer-Verlag, New York, 1990.
MR 1033498 |
Zbl 0684.47029