Previous |  Up |  Next

Article

Keywords:
para-hypercomplex structure; left invariant Riemannian metric; Randers metric; Berwald metric; sectional curvature; flag curvature
Summary:
In this paper, firstly we study some left invariant Riemannian metrics on para-hypercomplex 4-dimensional Lie groups. In each Lie group, the Levi-Civita connection and sectional curvature have been given explicitly. We also show these spaces have constant negative scalar curvatures. Then by using left invariant Riemannian metrics introduced in the first part, we construct some left invariant Randers metrics of Berwald type. The explicit formulas for computing flag curvature have been obtained in all cases. Some of these Finsler Lie groups are of non-positive flag curvature.
References:
[1] Antonelli, P. L., Ingarden, R. S., Matsumoto, M.: The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology. Kluwer Academic Publishers, 1993. MR 1273129 | Zbl 0821.53001
[2] Asanov, G. S.: Finsler Geometry, Relativity and Gauge Theories. D. Reidel Publishing Company, 1985. MR 0827217 | Zbl 0576.53001
[3] Bao, D., Chern, S. S., Shen, Z.: An Introduction to Riemann-Finsler Geometry. Springer, Berlin, 2000. MR 1747675 | Zbl 0954.53001
[4] Barberis, M. L.: Hypercomplex structures on four-dimensional Lie groups. Proc. Amer. Math. Soc. 125 (4) (1997), 1043–1054. DOI 10.1090/S0002-9939-97-03611-3 | MR 1353375 | Zbl 0882.53047
[5] Barberis, M. L.: Hyper-Kahler Metrics Conformal to Left Invariant Metrics on Four-Dimensional Lie Groups. Math. Phys. Anal. Geom. 6 (2003), 1–8. DOI 10.1023/A:1022448007111 | MR 1962699 | Zbl 1031.53074
[6] Blažić, N., Vukmirović, S.: Four-dimensional Lie algebras with a para-hypercomplex structure. preprint, arxiv:math/0310180v1 [math.DG] (2003). MR 2737373
[7] Cortés, V., Mayer, C., Mohaupt, T., Saueressig, F.: Special geometry of Euclidean supersymmetry II. Hypermultiplets and the $c-$map. Tech. report, Institute of Physics Publishing for SISSA, 2005. MR 2158552
[8] Deng, S., Hou, Z.: Invariant Finsler metrics on homogeneous manifolds. J. Phys. A, Math. Gen. 37 (2004), 4353–4360. DOI 10.1088/0305-4470/37/15/004 | MR 2063598 | Zbl 1062.58007
[9] Deng, S., Hou, Z.: Invariant Randers metrics on homogeneous Riemannian manifolds. J. Phys. A, Math. Gen. 37 (2004), 4353–4360. DOI 10.1088/0305-4470/37/15/004 | MR 2063598 | Zbl 1049.83005
[10] Esrafilian, E., Moghaddam, H. R. Salimi: Flag curvature of invariant Randers metrics on homogeneous manifolds. J. Phys. A, Math. Gen. 39 (2006), 3319–3324. DOI 10.1088/0305-4470/39/13/011 | MR 2214213
[11] Esrafilian, E., Moghaddam, H. R. Salimi: Induced invariant Finsler metrics on quotient groups. Balkan J. Geom. Appl. 11 (1) (2006), 73–79. MR 2234541
[12] Gibbons, G. W., Papadopoulos, G., Stelle, K. S.: HKT and OKT geometries on soliton black hole moduli spaces. Nuclear Phys. B 508 (1997), 623–658. MR 1600079 | Zbl 0925.83060
[13] Moghaddam, H. R. Salimi: Flag curvature of invariant $(\alpha ,\beta )$-metrics of type $\frac{(\alpha +\beta )^2}{\alpha }$. J. Phys. A, Math. Theor. 41 (24), Article ID 275206, 6pp. MR 2455543
[14] Moghaddam, H. R. Salimi: On the flag curvature of invariant Randers metrics. Math. Phys. Anal. Geom. 11 (2008), 1–9. DOI 10.1007/s11040-008-9037-8 | MR 2428098
[15] Moghaddam, H. R. Salimi: On some hypercomplex 4-dimensional Lie groups of constant scalar curvature. Internat. J. Geom. Methods in Modern Phys. 6 (4) (2009), 619–624. DOI 10.1142/S0219887809003710 | MR 2541940
[16] Moghaddam, H. R. Salimi: Randers metrics of Berwald type on 4-dimensional hypercomplex Lie groups. J. Phys. A, Math. Theor. 095212 42 (2009), ID 095212, 7pp. DOI 10.1088/1751-8113/42/9/095212 | MR 2525540
[17] Moghaddam, H. R. Salimi: Some Berwald spaces of non-positive flag curvature. J. Geom. Phys. 59 (2009), 969–975. DOI 10.1016/j.geomphys.2009.04.003 | MR 2536856
[18] Poon, Y. S.: Examples of hyper-Kähler connections with torsion. Vienna, preprint ESI, 770 (1999), 1-7. MR 1848672 | Zbl 0989.53028
[19] Randers, G.: On an asymmetrical metric in the four-space of general relativity. Phys. Rev. 59 (1941), 195–199. DOI 10.1103/PhysRev.59.195 | MR 0003371 | Zbl 0027.18101
[20] Shen, Z.: Lectures on Finsler Geometry. World Scientific, 2001. MR 1845637 | Zbl 0974.53002
Partner of
EuDML logo