Previous |  Up |  Next

Article

Keywords:
analytic functions; starlike; convex; symmetric point
Summary:
In the present paper, we obtain coefficient estimates for new subclass of analytic functions with respect to symmetric points. A sufficient condition for a function to belong to this class of function is also obtained.
References:
[1] Acu, M., Owa, S.: On some subclass of univalent functions. J. Inequal. Pure Appl. Math. 6 (3) (2005), 1–6. MR 2164311
[2] Clunie, J., Keogh, F. R.: On starlike and schlicht functions. J. London Math. Soc. 35 (1960), 229–233. DOI 10.1112/jlms/s1-35.2.229 | MR 0110814
[3] El-Ashwah, R. M., Thomas, D. K.: Some subclasses of close-to-convex functions. J. Ramanujan Math. Soc. 2 (1987), 86–100. MR 0945612 | Zbl 0673.30009
[4] Ghanim, F., Darus, M.: On certain class of analytic function with fixed second positive coefficient. Int. J. Math. Anal. 2 (2) (2008), 55–66. MR 2418574 | Zbl 1180.30012
[5] Ghanim, F., Darus, M., Sivasubramanian, S.: On new subclass of analytic univalent function. Int. J. Pure Appl. Math. 40 (3) (2007), 307–319. MR 2362747 | Zbl 1132.30314
[6] Goodman, A. W.: On uniformly convex functions. Ann. Polon. Math. 56 (1) (1991), 87–92. MR 1145573 | Zbl 0744.30010
[7] Goodman, A. W.: On uniformly starlike functions. J. Math. Anal. Appl. 155 (1991), 364–370. DOI 10.1016/0022-247X(91)90006-L | MR 1097287 | Zbl 0726.30013
[8] Kanas, S., Ronning, F.: Uniformly starlike and convex function and other related classes of univalent functions. Ann. Univ. Mariae Curie-Skłodowska Sect. A 53 (1991), 95–105. MR 1775538
[9] Lakshminarasimhan, T. V.: On subclasses of functions starlike in the unit disc. J. Indian Math. Soc. 41 (1977), 233–243. MR 0515378 | Zbl 0446.30004
[10] Sakaguchi, K.: On certain univalent mapping. J. Math. Soc. Japan 11 (1959), 72–75. DOI 10.2969/jmsj/01110072 | MR 0107005
[11] Thomas, D. K.: On starlike and close-to-convex univalent functions. J. London Math. Soc. 42 (1967), 472–435. MR 0215977 | Zbl 0174.12004
Partner of
EuDML logo