[1] BROWN T. C.-FREEDMAN A. R.:
The uniform density of sets of integers and Fermaťs last theorem. C. R. Math. Rеp. Acad. Sci. Canada 11 (1990), 1-6.
MR 1043085
[2] CONNOR J. S.:
The statistical convergence and strong p-Cesàro convergence of sequences. Analysis (Munich) 8 (1988), 47-63.
MR 0954458
[3] ERDÖS P.:
Solutions of advanced problems: $\Phi$-convergence. Amеr. Math. Monthly 85 (1978), 122-123.
MR 1538623
[4] FASТ H.:
Sur la convergence statistique. Colloq. Math. 2 (1951), 241-244.
MR 0048548
[6] KOSTYRKO P.-ŠALÁT T.-WILCIŃSKY W.:
$I$-convergence. Real Anal. Exchange 26 (2000-01), 669-686.
MR 1844385 |
Zbl 1199.40026
[7] KOVÁČ E.: Various Types of Convergence, $\varphi$-Convergence. Master Thesis, FMPI, Comenius University, Bratislava, 2001. (Slovak).
[8] KOVÁČ E.: On $\varphi$-Convergence and $\varphi$-Densities of Sets of Integers. Rigorous Thesis, FMPI, Comenius University, Bratislava, 2002.
[9] NIVEN I.-ZUCKERMAN H. S.: An Introduction to the Theory of Numbers. (4th ed.), John Wiley, New York-London-Sydney, 1967.
[10] PETERSEN G. M.:
Regular Matrix Transformations. McGraw-Hill Publ. Comp., New York-Toronto-Sydney, 1966.
MR 0225045 |
Zbl 0159.35401
[11] ŠALÁT:
On statisticaly convergent sequences of real numbers. Math. Slovaca 30 (1980), 139-150.
MR 0587239
[12] SCHOENBERG I. J.:
The integrability of certain functions and related summability methods. Amer. Math. Monthly 66 (1959), 361-375.
MR 0104946 |
Zbl 0089.04002
[13] SТEINHAUS H.: Quelques remarques sur la généralisation de la notion de limite. Prace Matematyczno-Fizyczne 22 (1911), 121-134. (Polish)