[1] BOAS H. P.-STRAUBE E. J.:
Equivalence of regularity for the Bergman projection and the $\overline\partial$-Neumann operator. Manuscripta Math. 67 (1990), 25-33.
MR 1037994
[2] BOAS H. P.-STRAUBE E. J.:
Sobolev estimates for the $\overline\partial$-Neumann operator on domains in Cn admitting a defining function that is plurisubharmonic on the boundary. Math. Z. 206 (1991), 81-88.
MR 1086815
[3] BOAS H. P.-STRAUBE E. J.:
Global regularity of the $\overline\partial$-Neumann problem: A Survey of the $L^2$-Sobolev theory. In: Several Complex Variables (M. Schneider et al., eds.), Math. Sci. Res. Inst. Publ. 37, Cambridge University Press, Cambridge, 1999, pp. 79-111.
MR 1748601
[4] BONAMI A.-CHARPENTIER P.:
Boundary values for the canonical solution to $\overline\partial$-equation and $W^{1/2$ -estimates. Preprint, Bordeaux, 1990.
MR 1055987
[5] CHEN S.-C-SHAW M.-C:
Partial Differential Equations in Several Complex Variables. Stud. Adv. Math. 19, AMS-International Press, Providence, RI, 2001.
MR 1800297
[6] EHSANI D.:
Analysis of the $\overline\partial$-Neumann problem along a straight edge. Preprint Math. CV/0309169.
MR 2091680 |
Zbl 1057.32015
[7] EHSANI D.:
Solution of the d-bar-Neumann problem on a bi-disc. Math. Res. Lett. 10 (2003), 523-533.
MR 1995791
[8] EHSANI D.:
Solution of the d-bar-Neumann problem on a non-smooth domain. Indiana Univ. Math. J. 52 (2003), 629-666.
MR 1986891
[9] ENGLIŠ M.:
Pseudolocal estimates for $\overline\partial$ on general pseudoconvex domains. Indiana Univ. Math. J. 50 (2001), 1593-1607.
MR 1889072 |
Zbl 1044.32029
[10] FOLLAND G. B.-KOHN J. J.:
The Neumann Problem for the Cauchy-Riemann Complex. Princeton University Press, Princeton, 1972.
MR 0461588 |
Zbl 0247.35093
[11] GRISVARD P.:
Elliptic Problems in Nonsmooth Domains. Monogr. and Stud, in Math. 24. Pitman Advanced Publishing Program, Pitman Publishing Inc., Boston-London-Melbourne, 1985.
MR 0775683 |
Zbl 0695.35060
[12] HENKIN G.-IORDAN A.-KOHN J. J.:
Estimations sous-elliptiques pour le problem $\overline\partial$-Neumann dans un domaine strictement pseudoconvexe a frontiere lisse par morceaux. C. R. Acad. Sci. Paris Ser. I Math. 323 (1996), 17-22.
MR 1401622
[13] HÖRMANDER L.:
$L^2$ -estimates and existence theorems for the $\overline\partial$-operator. Acta Math. 113 (1965), 89-152.
MR 0179443 |
Zbl 0158.11002
[14] KOHN J. J.:
Harmonic integrals on strongly pseudo-convex manifolds I. Ann. Math. (2) 78 (1963), 112-148.
MR 0153030 |
Zbl 0161.09302
[15] KOHN J. J.:
Global regularity for $\overline\partial$ on weakly pseudoconvex manifolds. Trans. Amer. Math. Soc 181 (1973), 273-292.
MR 0344703
[16] KOHN J. J.:
Subellipticity of the $\overline\partial$-Neumann problem on pseudoconvex domains: Sufficient conditions. Acta Math. 142 (1979), 79-122.
MR 0512213
[17] KOHN J. J.:
A survey of the $\overline\partial$ -Neumann problem. In: Complex Analysis of Several Variables (Yum-Tong Siu, ed.), Proc Sympos. Pure Math. 41, Amer. Math. Soc, Providence, RI, 1984, pp. 137-145.
MR 0740877
[18] KRANTZ S. G.:
Partial Differential Equations and Complex Analysis. CRC Press, Boca Raton, 1992.
MR 1207812 |
Zbl 0852.35001
[19] MICHEL J.-SHAW M.-C.:
Subelliptic estimates for the $\overline\partial$-Neumann operator on piecewise smooth strictly pseudoconvex domains. Duke Math. J. 93 (1998), 115-128.
MR 1620087 |
Zbl 0953.32027
[20] MICHEL J.-SHAW M.-C:
The $\overline\partial$-Neumann operator on Lipschitz pseudoconvex domains with plurisubharmonic defining functions. Duke Math. J. 108 (2001), 421-447.
MR 1838658 |
Zbl 1020.32030
[21] SHAW M.-C.:
Local existence theorems with estimates for $\overline\partial_b$ on weakly pseudo-convex $CR$ manifolds. Math. Ann. 294 (1992), 677-700.
MR 1190451
[22] STEIN E. M.:
Singular Integrals and Differentiability Properties of Functions. Princeton Math. Ser. 30, Princeton Univ. Press, Princeton, NJ, 1970.
MR 0290095 |
Zbl 0207.13501
[23] STRAUBE E. :
Plurisubharmonic functions and subellipticity of the $\overline\partial$-Neumann problem on nonsmooth domains. Math. Res. Lett. 4 (1997), 459-467.
MR 1470417