Previous |  Up |  Next

Article

References:
[1] A.V. Babin, M.I. Višik: Attractors of partial differential equations and estimates of their dimensions. Uspekhi Mat. Nauk 38 (1983). (Russian) MR 1182818
[2] J. Ball: A version of the fundamental theorem for Young measures. PDE’s and continuum models of phase transitions, Lecture Notes in Physics 344 (1989), 207–215. DOI 10.1007/BFb0024945 | MR 1036070 | Zbl 0991.49500
[3] H. Bellout, F. Bloom, J. Nečas: Phenomenological behavior multipolar viscous fluids. (to appear). MR 1178435
[4] R.E. Edwards: Functional analysis. Rinehart and Winston, Holt, 1965. MR 0221256 | Zbl 0182.16101
[5] A.E. Green, R.S. Rivlin: Multipolar continuum mechanics. Arch. Rat. Mech. Anal. 16 (1964), 325–353. MR 0182191
[6] A.E. Green, R.S. Rivlin: Simple force and stress multipoles. Arch. Rat. Mech. Anal. 17 (1964), 113–147. MR 0182192
[7] E. Hewitt, K. Stromberg: Real and abstract analysis. Springer, 1965. MR 0367121
[8] M.A. Krasnoselski, J.B. Ruticki: Convex functions and Orlicz spaces. GITL, Moscow, 1958. (Russian) MR 0106412
[9] O.A. Ladyženskaya: Mathematical problems of dynamics of viscous incompressible fluids. Nauka, Moscow. (Russian)
[10] O.A. Ladyženskaya: On the finiteness of the dimension of bounded invariant sets for the Navier-Stokes equations and other related dissipative systems. J. Soviet Math. 28.no.5 (1985), 714–725. DOI 10.1007/BF02112336
[11] J.L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris, 1969. MR 0259693 | Zbl 0189.40603
[12] J.L. Lions, E. Magenes: Problèmes aux limites non homogènes et applications. Dunod, Paris, 1968.
[13] J. Nečas: Sur les normes équivalentes dans $W^k_p (\Omega )$ et sur la coercivité des formes formellement positives. Les presses de lUnivesité de Montréal (1966).
[14] J. Nečas, A. Novotný: Some qualitative properties of the viscous compressible multipolar heat conductive flow. Commun. in Partial Differential Equations 16(2&3) (1991), 197–220. DOI 10.1080/03605309108820757 | MR 1104099
[15] J. Nečas, A. Novotný, M. Šilhavý: Global solution to the compressible isothermal multipolar fluid. J. Math. Anal. Appl. 162 (1991), 223–241. DOI 10.1016/0022-247X(91)90189-7 | MR 1135273
[16] J. Nečas, A. Novotný, M. Šilhavý: Global solution to the ideal compressible heat-conductive fluid. Comment. Math. Univ. Carolinae 30,3 (1989), 551–564. MR 1031872
[17] J. Nečas, A. Novotný, M. Šilhavý: Global solution to the viscous compressible barotropic fluid. (to appear).
[18] J. Nečas, M. Šilhavý: Multipolar viscous fluids. Quart. Appl. Math. 49 (1991), 247–265. DOI 10.1090/qam/1106391 | MR 1106391
[19] A. Novotný: Viscous multipolar fluids—physical background and mathematical theory. Progress in Physics 39 (1991). MR 1184232
[20] Simon J.: Compact sets in the space $L^p(0,T;B)$. Annali di Mat. Pura ed Applic. 146 (1987), 65–96. MR 0916688
[21] R. Temam: Infinite-dimensional dynamical systems in mechanics and physics. Springer-Verlag, New York, 1988. MR 0953967 | Zbl 0662.35001
Partner of
EuDML logo