[2] A. L. Besse:
Manifolds all of whose Geodesics are Closed. Springer-Verlag, Berlin Heidelberg New York, 1978.
MR 0496885 |
Zbl 0387.53010
[4] D. M. DeTurck and J. L. Kazdan:
Some regularity theorems in Riemannian geometry. Ann. Scient. Éc. Norm. Sup., 4$^{\text{e}}$ série 14 (1981), 249–260.
MR 0644518
[5] E. B. Dynkin:
Markov Processes, vol. 2. Springer-Verlag, Berlin Heidelberg New York, 1965.
MR 0193671
[7] A. Gray and M. Pinsky:
The mean exit time from a small geodesic ball in a Riemannian manifold. Bulletin des Sciences Mathematiques, 2$^{\text{e}}$ série 107 (1983), 345–370.
MR 0732357
[8] A. Gray and L. Vanhecke:
Riemannian geometry as determined by the volume of small geodesic balls. Acta Math. 142 (1979), 157–198.
DOI 10.1007/BF02395060 |
MR 0521460
[9] A. Gray and T. J. Willmore:
Mean-value theorems for Riemannian manifolds. Proc. Roy. Soc. Edinburgh 92A (1982), 343–364.
MR 0677493
[10] O. Kowalski:
The second mean-value operator on Riemannian manifolds. Proceedings of the CSSR-GDR-Polish Conference on Differential Geometry and its Applications, Nove Mesto 1980, pp. 33–45, Universita Karlova, Praha, 1982.
MR 0663211
[11] O. Kowalski:
A comparison theorem for spherical mean-value operators in Riemannian manifolds. Proc. London Math. Soc. (3) 47 (1983), 1–14.
MR 0698924 |
Zbl 0519.53040
[12] M. Kôzaki and Y. Ogura:
On geometric and stochastic mean values for small geodesic spheres in Riemannian manifolds. Tsukuba J. Math. 11 (1987), 131–145.
DOI 10.21099/tkbjm/1496160508 |
MR 0899727
[13] M. Kôzaki and Y. Ogura:
On the independence of exit time and exit position from small geodesic balls for Brownian motions on Riemannian manifolds. Math. Z. 197 (1988), 561–581.
DOI 10.1007/BF01159812 |
MR 0932686
[14] M. Kôzaki and Y. Ogura:
Riemannian manifolds with stochastic independence conditions are rich enough. Probability theory and Math. statistics (Kyoto 1986), pp. 206–213 vol. 1299, Springer, Berlin-Heidelberg-New York, 1988.
MR 0935991
[16] E. M. Patterson:
A class of critical Riemannian metrics. J. London Math. Soc. 23 (1981), no. 2, 349–358.
MR 0609115 |
Zbl 0417.53025
[17] M. Pinsky:
Moyenne stochastique sur une variété riemannienne. C. R. Acad. Sci. Paris, Série I 292 (1981), 991–994.
MR 0630934 |
Zbl 0518.53046
[18] M. Pinsky:
Brownian motion in a small geodesic ball. Asterique 132, Actes du Colloque Laurant Schwartz, 1985, pp. 89–101.
MR 0816762
[19] M. Pinsky: Independence implies Einstein metric, preprint.
[21] K. Sekigawa and L. Vanhecke:
Volume-preserving geodesic symmetries on four-dimensional 2-stein spaces. Kodai Math. J. 9 (1986), 215–224.
DOI 10.2996/kmj/1138037204 |
MR 0842869