Previous |  Up |  Next

Article

Keywords:
$MV$-algebra; idempotent modification; subdirect reducibility
Summary:
The notion of idempotent modification of an algebra was introduced by Ježek. He proved that the idempotent modification of a group is subdirectly irreducible. For an $MV$-algebra $\mathcal A$ we denote by $\mathcal A^{\prime }, A$ and $\ell (\mathcal A)$ the idempotent modification, the underlying set or the underlying lattice of $\mathcal A$, respectively. In the present paper we prove that if $\mathcal A$ is semisimple and $\ell (\mathcal A)$ is a chain, then $\mathcal A^{\prime }$ is subdirectly irreducible. We deal also with a question of Ježek concerning varieties of algebras.
References:
[1] G. Cattaneo and F. Lombardo: Independent axiomatization of $MV$-algebras. Tatra Mt. Math. Publ. 15 (1998), 227–232. MR 1655091
[2] C. C. Chang: Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. 88 (1958), 467–490. DOI 10.1090/S0002-9947-1958-0094302-9 | MR 0094302 | Zbl 0084.00704
[3] R. Cignoli, I. M. L. D’Ottaviano and D. Mundici: Algebraic Foundation of Many Valued Reasoning. Kluwer Academic Publ., Dordrecht, 2000. MR 1786097
[4] A. Dvurečenskij and S. Pulmannová: New Trends in Quantum Structure. Kluwer Academic Publ., Dordrecht and Ister, Bratislava, 2000. MR 1861369
[5] L. Fuchs: Partially Ordered Algebraic Systems. Pergamon Press, Oxford-New York-London-Paris, 1963. MR 0171864 | Zbl 0137.02001
[6] D. Glushankof: Cyclic ordered groups and $MV$-algebras. Czechoslovak Math. J. 43 (1993), 249–263. MR 1211747
[8] J. Ježek: A note on idempotent modifications of groups. Czechoslovak Math. J. 54 (2004), 229–231. DOI 10.1023/B:CMAJ.0000027262.04069.10 | MR 2040234
Partner of
EuDML logo