Article
Keywords:
$MV$-algebra; idempotent modification; subdirect reducibility
Summary:
The notion of idempotent modification of an algebra was introduced by Ježek. He proved that the idempotent modification of a group is subdirectly irreducible. For an $MV$-algebra $\mathcal A$ we denote by $\mathcal A^{\prime }, A$ and $\ell (\mathcal A)$ the idempotent modification, the underlying set or the underlying lattice of $\mathcal A$, respectively. In the present paper we prove that if $\mathcal A$ is semisimple and $\ell (\mathcal A)$ is a chain, then $\mathcal A^{\prime }$ is subdirectly irreducible. We deal also with a question of Ježek concerning varieties of algebras.
References:
[1] G. Cattaneo and F. Lombardo:
Independent axiomatization of $MV$-algebras. Tatra Mt. Math. Publ. 15 (1998), 227–232.
MR 1655091
[3] R. Cignoli, I. M. L. D’Ottaviano and D. Mundici:
Algebraic Foundation of Many Valued Reasoning. Kluwer Academic Publ., Dordrecht, 2000.
MR 1786097
[4] A. Dvurečenskij and S. Pulmannová:
New Trends in Quantum Structure. Kluwer Academic Publ., Dordrecht and Ister, Bratislava, 2000.
MR 1861369
[5] L. Fuchs:
Partially Ordered Algebraic Systems. Pergamon Press, Oxford-New York-London-Paris, 1963.
MR 0171864 |
Zbl 0137.02001
[6] D. Glushankof:
Cyclic ordered groups and $MV$-algebras. Czechoslovak Math. J. 43 (1993), 249–263.
MR 1211747