Article
Keywords:
gcd-closed set; greatest-type divisor(GTD); maximal gcd-fixed set(MGFS); least common multiple matrix; power LCM matrix; nonsingularity
Summary:
A set $\mathcal{S}=\lbrace x_1,\ldots ,x_n\rbrace $ of $n$ distinct positive integers is said to be gcd-closed if $(x_{i},x_{j})\in \mathcal{S}$ for all $1\le i,j\le n $. Shaofang Hong conjectured in 2002 that for a given positive integer $t$ there is a positive integer $k(t)$ depending only on $t$, such that if $n\le k(t)$, then the power LCM matrix $([x_i,x_j]^t)$ defined on any gcd-closed set $\mathcal{S}=\lbrace x_1,\ldots ,x_n\rbrace $ is nonsingular, but for $n\ge k(t)+1$, there exists a gcd-closed set $\mathcal{S}=\lbrace x_1,\ldots ,x_n\rbrace $ such that the power LCM matrix $([x_i,x_j]^t)$ on $\mathcal{S}$ is singular. In 1996, Hong proved $k(1)=7$ and noted $k(t)\ge 7$ for all $t\ge 2$. This paper develops Hong’s method and provides a new idea to calculate the determinant of the LCM matrix on a gcd-closed set and proves that $k(t)\ge 8$ for all $t\ge 2$. We further prove that $k(t)\ge 9$ iff a special Diophantine equation, which we call the LCM equation, has no $t$-th power solution and conjecture that $k(t)=8$ for all $t\ge 2$, namely, the LCM equation has $t$-th power solution for all $t\ge 2$.
References:
[1] S. Beslin:
Reciprocal GCD matrices and LCM matrices. Fibonacci Quart. 29 (1991), 271–274.
MR 1114893 |
Zbl 0738.11026
[5] K. Bourque and S. Ligh:
Matrices associated with classes of multiplicative functions. Linear Algebra Appl. 216 (1995), 267–275.
MR 1319990
[6] S. Z. Chun:
GCD and LCM power matrices. Fibonacci Quart. 34 (1996), 290–297.
MR 1394756
[7] P. Haukkanen, J. Wang and J. Sillanpää:
On Smith’s determinant. Linear Algebra Appl. 258 (1997), 251–269.
MR 1444107
[8] S. Hong:
LCM matrix on an r-fold gcd-closed set. J. Sichuan Univ. Nat. Sci. Ed. 33 (1996), 650–657.
MR 1440627 |
Zbl 0869.11021
[9] S. Hong:
On Bourque-Ligh conjecture of LCM matrices. Adv. in Math. (China) 25 (1996), 566–568.
MR 1453166 |
Zbl 0869.11022
[10] S. Hong:
On LCM matrices on GCD-closed sets. Southeast Asian Bull. Math. 22 (1998), 381–384.
MR 1811182 |
Zbl 0936.15011
[13] S. Hong:
On the factorization of LCM matrices on gcd-closed sets. Linear Algebra Appl. 345 (2002), 225–233.
MR 1883274 |
Zbl 0995.15006
[17] H. J. S. Smith: On the value of a certain arithmetical determinant. Proc. London Math. Soc. 7 (1875–1876), 2080–212.