Previous |  Up |  Next

Article

Keywords:
distributive lattice; indecomposable matrix; fully indecomposable matrix; semigroup; characterization
Summary:
In this paper, the concepts of indecomposable matrices and fully indecomposable matrices over a distributive lattice $L$ are introduced, and some algebraic properties of them are obtained. Also, some characterizations of the set $F_n(L)$ of all $n\times n$ fully indecomposable matrices as a subsemigroup of the semigroup $H_n(L)$ of all $n\times n$ Hall matrices over the lattice $L$ are given.
References:
[1] G. Frobenius: Über Matrizen aus nichtnegativen Elementen. Sitzb. d. Preuss, Akad. d. Wiss. (1912), 456–477.
[2] M. Marcus, H. Minc: Disjoint pairs of sets and incidence matrices. Illinois J.  Math. 7 (1963), 137–147. DOI 10.1215/ijm/1255637488 | MR 0142473
[3] Š. Schwarz: The semigroup of fully indecomposable relations and Hall relations. Czechoslovak Math. J. 23 (1973), 151–163. MR 0316612 | Zbl 0261.20057
[4] C. Y. Chao: On a conjecture of the semigroup of fully indecomposable relations. Czechoslovak Math.  J. 27 (1977), 591–597. MR 0450067 | Zbl 0384.20051
[5] C. Y. Chao, M. C. Zhang: On the semigroup of fully indecomposable relations. Czechoslovak Math.  J. 33 (1983), 314–319. MR 0699029
[6] J. Y. Shao, Q. Li: On the indices of convergence of an irreducible Boolean matrix. Linear Algebra Appl. 97 (1987), 185–210. DOI 10.1016/0024-3795(87)90149-2 | MR 0916791
[7] J. Y. Shao, Q. Li: The index set for the class of irreducible Boolean matrices with given period. Linear and Multilinear Algebra 22 (1988), 285–303. DOI 10.1080/03081088808817840 | MR 0937171 | Zbl 0637.15013
[8] R. A. Brualdi, B. L. Liu: Fully indecomposable exponents of primitive matrices. Proc. Amer. Math. Soc. 112 (1991), 1193–1202. DOI 10.1090/S0002-9939-1991-1065941-8 | MR 1065941
[9] X. J. Wu, J. Y. Shao: The index set of convergence of irreducible Boolean matrices. J.  Math. Res. Exposition 12 (1992), 441–447. (Chinese) MR 1191081
[10] J. Y. Shao: On the indices of convergence of irreducible and nearly reducible Boolean matrices. Acta Math. Appl. Sinica 15 (1992), 333–344. (Chinese) MR 1326871 | Zbl 0762.05028
[11] Y. J. Tan: The semigroup of Hall matrices over a distributive lattice. Semigroup Forum 61 (2000), 303–314. DOI 10.1007/PL00006027 | MR 1832190
[12] Y. J. Tan: Primitive lattice matrices. Southeast Asian Bull. Math. (to appear). MR 1812689 | Zbl 1057.15021
[13] Y. J. Tan: On compositions of lattice matrices. Fuzzy Sets and Systems 129 (2002), 19–28. MR 1907992 | Zbl 1014.15011
[14] Y. Giveón: Lattice matrices. Information and Control 7 (1964), 477–484. DOI 10.1016/S0019-9958(64)90173-1 | MR 0182512
[15] K. H. Kim: Boolean Matrix Theory and Applications. Marcel Dekker, New York, 1982. MR 0655414 | Zbl 0495.15003
Partner of
EuDML logo