Article
Keywords:
Jacobson radical; finite rank operator
Summary:
In this paper we investigate finite rank operators in the Jacobson radical $\mathcal R_{\mathcal N\otimes \mathcal M}$ of $\mathop {\mathrm Alg}(\mathcal N\otimes \mathcal M)$, where $\mathcal N$, $\mathcal M$ are nests. Based on the concrete characterizations of rank one operators in $\mathop {\mathrm Alg}(\mathcal N\otimes \mathcal M)$ and $\mathcal R_{\mathcal N\otimes \mathcal M}$, we obtain that each finite rank operator in $\mathcal R_{\mathcal N\otimes \mathcal M}$ can be written as a finite sum of rank one operators in $\mathcal R_{\mathcal N\otimes \mathcal M}$ and the weak closure of $\mathcal R_{\mathcal N\otimes \mathcal M}$ equals $\mathop {\mathrm Alg}({\mathcal N\otimes \mathcal M})$ if and only if at least one of $\mathcal N$, $\mathcal M$ is continuous.
References:
[2] J. A. Erdos:
On finite rank operators in nest algebras. J. London Math. Soc. 43 (1968), 391–397.
MR 0230156
[3] F. Gilfeather, A. Hopenwasser, and D. Larson:
Reflexive algebras with finite width lattices: tensor products, cohomology, compact perturbation. J. Funct. Anal. 55 (1984), 176–199.
MR 0733915
[5] A. Hopenwasser, R. Moore:
Finite rank operators in reflexive operator algebras. J. London Math. Soc. 27 (1983), 331–338.
MR 0692538
[8] W. Longstaff:
Operators of rank one in reflexive algebras. Canadian J. Math. 28 (1976), 19–23.
MR 0397435 |
Zbl 0317.46052
[9] J. R. Ringrose:
On some algebras of operators. Proc. London Math. Soc. 15 (1965), 61–83.
MR 0171174 |
Zbl 0135.16804
[10] J. R. Ringrose:
On some algebras of operators II. Proc. London Math. Soc. 15 (1965), 61–83.
MR 0171174