Previous |  Up |  Next

Article

Keywords:
asymptotic stability; viscoelastic problems; boundary dissipation; wave equation
Summary:
We consider the damped semilinear viscoelastic wave equation \[ u^{\prime \prime } - \Delta u + \int ^t_0 h (t-\tau ) \div \lbrace a \nabla u(\tau ) \rbrace \mathrm{d}\tau + g(u^{\prime }) = 0 \quad \text{in}\hspace{5.0pt}\Omega \times (0,\infty ) \] with nonlocal boundary dissipation. The existence of global solutions is proved by means of the Faedo-Galerkin method and the uniform decay rate of the energy is obtained by following the perturbed energy method provided that the kernel of the memory decays exponentially.
References:
[1] J. J.  Bae, J. Y.  Park, and J. M.  Jeong: On uniform decay of solutions for wave equation of Kirchhoff type with nonlinear boundary damping and memory source term. Appl. Math. Comput. 138 (2003), 463–478. DOI 10.1016/S0096-3003(02)00163-7 | MR 1950077
[2] E. E. Beckenbach and R. Bellman: Inequalities. Springer-Verlag, Berlin, 1971. MR 0192009
[3] M. M. Cavalcanti: Existence and uniform decay for the Euler-Bernoulli viscoelastic equation with nonlocal boundary dissipation. Discrete and Continuous Dynamical Systems 8 (2002), 675–695. MR 1897875 | Zbl 1009.74034
[4] M. M.  Cavalcanti, V. N.  Domingos Cavalcanti, T. F.  Ma, and J. A.  Soriano: Global existence and asymptotic stability for viscoelastic problems. Differential and Integral Equations 15 (2002), 731–748. MR 1893844
[5] M. M.  Cavalcanti, V. N.  Domingos Cavalcanti, J. S.  Prates Filho, and J. A.  Soriano: Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping. Diff. Int. Eqs. 14 (2001), 85–116. MR 1797934
[6] I.  Lasiecka, D.  Tataru: Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping. Diff. Int. Eqs. 6 (1993), 507–533. MR 1202555
[7] J.-L.  Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod-Gauthier Villars, Paris, 1969. MR 0259693 | Zbl 0189.40603
[8] J. Y.  Park, J. J.  Bae: On coupled wave equation of Kirchhoff type with nonliear boundary damping and memory term. Appl. Math. Comput. 129 (2002), 87–105. DOI 10.1016/S0096-3003(01)00031-5 | MR 1897321
[9] B.  Rao: Stabilization of Kirchhoff plate equation in star-shaped domain by nonlinear feedback. Nonlinear Anal., T.M.A. 20 (1993), 605–626. DOI 10.1016/0362-546X(93)90023-L | MR 1214731
[10] M. L.  Santos: Decay rates for solutions of a system of wave equations with memory. Elect.  J. Diff. Eqs. 38 (2002), 1–17. MR 1907714 | Zbl 1010.35012
[11] E.  Zuazua: Uniform stabilization of the wave equation by nonlinear boundary feedback. SIAM J.  Control Optim. 28 (1990), 466–477. DOI 10.1137/0328025 | MR 1040470 | Zbl 0695.93090
Partner of
EuDML logo