[1] J. J. Bae, J. Y. Park, and J. M. Jeong:
On uniform decay of solutions for wave equation of Kirchhoff type with nonlinear boundary damping and memory source term. Appl. Math. Comput. 138 (2003), 463–478.
DOI 10.1016/S0096-3003(02)00163-7 |
MR 1950077
[2] E. E. Beckenbach and R. Bellman:
Inequalities. Springer-Verlag, Berlin, 1971.
MR 0192009
[3] M. M. Cavalcanti:
Existence and uniform decay for the Euler-Bernoulli viscoelastic equation with nonlocal boundary dissipation. Discrete and Continuous Dynamical Systems 8 (2002), 675–695.
MR 1897875 |
Zbl 1009.74034
[4] M. M. Cavalcanti, V. N. Domingos Cavalcanti, T. F. Ma, and J. A. Soriano:
Global existence and asymptotic stability for viscoelastic problems. Differential and Integral Equations 15 (2002), 731–748.
MR 1893844
[5] M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. S. Prates Filho, and J. A. Soriano:
Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping. Diff. Int. Eqs. 14 (2001), 85–116.
MR 1797934
[6] I. Lasiecka, D. Tataru:
Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping. Diff. Int. Eqs. 6 (1993), 507–533.
MR 1202555
[7] J.-L. Lions:
Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod-Gauthier Villars, Paris, 1969.
MR 0259693 |
Zbl 0189.40603
[10] M. L. Santos:
Decay rates for solutions of a system of wave equations with memory. Elect. J. Diff. Eqs. 38 (2002), 1–17.
MR 1907714 |
Zbl 1010.35012