[2] C. De Coster, C. Fabry and F. Munyamarere:
Nonresonance conditions for fourth-order nonlinear boundary problems. Internat. J. Math. Sci. 17 (1994), 725–740.
DOI 10.1155/S0161171294001031 |
MR 1298797
[3] M. A. Del Pino and R. F. Manasevich:
Existence for a fourth-order boundary value problem under a two parameter nonresonance condition. Proc. Amer. Math. Soc. 112 (1991), 81–86.
DOI 10.2307/2048482 |
MR 1043407
[6] R. Agarwal:
On fourth-order boundary value problems arising in beam analysis. Differential Integral Equations 2 (1989), 91–110.
MR 0960017 |
Zbl 0715.34032
[8] C. De Coster and L. Sanchez:
Upper and lower solutions, Ambrosetti-Prodi problem and positive solutions for fourth-order O. D. E. Riv. Mat. Pura. Appl. 14 (1994), 1129–1138.
MR 1275354
[11] Zhanbing Bai:
The method of lower and upper solutions for a bending of an elastic beam equation. J. Math. Anal. Appl. 248 (2000), 195–402.
DOI 10.1006/jmaa.2000.6887 |
MR 1772591
[12] R. Y. Ma, J. H. Zhang and S. M. Fu:
The method of lower and upper solutions for fourth-order two-point boundary value problems. J. Math. Anal. Appl. 215 (1997), 415–422.
DOI 10.1006/jmaa.1997.5639 |
MR 1490759
[13] J. M. Davis and J. Henderson:
Triple positive symmetric solutions for a Lidstone boundary value problem. Differential Equations Dynam. Systems 7 (1999), 321–330.
MR 1861076
[14] J. M. Davis, P. W. Eloe and J. Henderson:
Triple positive solutions and dependence on higher order derivatives. J. Math. Anal. Appl. 237 (1999), 710–720.
DOI 10.1006/jmaa.1999.6500 |
MR 1710319
[15] J. M. Davis, J. Henderson and P. J. Y. Wong:
General Lidstone problems: multiplicity and symmetry of solutions. J. Math. Anal. Appl. 251 (2000), 527–548.
DOI 10.1006/jmaa.2000.7028 |
MR 1794756
[16] D. Gilbarg and N. S. Trudinger:
Elliptic Partial Differential Equations of Second Order. Springer-Verlag, New York, 1977.
MR 0473443