Previous |  Up |  Next

Article

Keywords:
generalized absolute continuity; Henstock-Kurzweil integral
Summary:
Using generalized absolute continuity, we characterize additive interval functions which are indefinite Henstock-Kurzweil integrals in the Euclidean space.
References:
[1] A. M.  Bruckner, J. B.  Bruckner and B. S.  Thomson: Real Analysis. Prentice-Hall, , 1997.
[2] Z.  Buczolich: Henstock integrable functions are Lebesgue integrable on a portion. Proc. American Math. Soc. 111 (1991), 127–129. DOI 10.1090/S0002-9939-1991-1034883-6 | MR 1034883 | Zbl 0732.26011
[3] Claude-Alain  Faure: A descriptive definition of some multidimensional gauge integrals. Czechoslovak Math.  J. 45 (1995), 549–562. MR 1344520
[4] R. A.  Gordon: The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics Vol. 4. AMS, Providence, 1994. MR 1288751
[5] J.  Jarník and J.  Kurzweil: Perron-type integration on $n$-dimensional intervals and its properties. Czechoslovak Math. J. 45 (1995), 79–106. MR 1314532
[6] W. B.  Jurkat and R. W.  Knizia: A characterization of multi-dimensional Perron integrals and the fundamental theorem. Canad.  J. Math. 43 (1991), 526–539. DOI 10.4153/CJM-1991-032-8 | MR 1118008
[7] J.  Kurzweil and J.  Jarník: Equiintegrability and controlled convergence of Perron-type integrable functions. Real Anal. Exchange 17 (1991/92), 110–139. MR 1147361
[8] J.  Kurzweil and J.  Jarník: Differentability and integrability in $n$  dimensions with respect to $\alpha $-regular intervals. Results Math. 21 (1992), 138–151. DOI 10.1007/BF03323075 | MR 1146639
[9] Lee Peng Yee and Ng Wee Leng: The Radon-Nikodým theorem for the Henstock integral in Euclidean space. Real Anal. Exchange 22 (1996/97), 677–687. MR 1460980
[10] Lee Peng Yee and Rudolf Výborný: The integral, an easy approach after Kurzweil and Henstock. Australian Mathematical Society Lecture Series  14, Cambridge University Press, Cambridge, 2000. MR 1756319
[11] Lee Tuo Yeong, Chew Tuan Seng and Lee Peng Yee: On Henstock integrability in Euclidean spaces. Real Anal. Exchange 22 (1996/97), 382–389. MR 1433623
[12] Lee Tuo Yeong: A full characterization of multipliers for the strong $\rho $-integral in the Euclidean space. Czechoslovak Math.  J. 54 (2004), 657–674. DOI 10.1007/s10587-004-6415-7 | MR 2086723
[13] Lee Tuo Yeong: The sharp Riesz-type definition for the Henstock-Kurzweil integral. Real Anal. Exchange 28 (2002/2003), 55–70. MR 1973968
[14] Lee Tuo Yeong: A full descriptive definition of the Henstock-Kurzweil integral in the Euclidean space. Proc. London Math. Soc. 87 (2003), 677–700. MR 2005879 | Zbl 1047.26006
[15] Lee Tuo Yeong: Some full characterizations of the strong McShane integral. Math. Bohem. 129 (2004), 305–312. MR 2092716 | Zbl 1080.26006
[16] Lu Jitan and Lee Peng Yee: The primitives of Henstock integrable functions in Euclidean space. Bull. London Math. Soc. 31 (1999), 173–180. DOI 10.1112/S0024609398005347 | MR 1664188
[17] S.  Saks: Theory of the Integral, 2nd edition. Stechert & Co., New York, 1964. MR 0167578
Partner of
EuDML logo