[1] A. M. Bruckner, J. B. Bruckner and B. S. Thomson: Real Analysis. Prentice-Hall, , 1997.
[3] Claude-Alain Faure:
A descriptive definition of some multidimensional gauge integrals. Czechoslovak Math. J. 45 (1995), 549–562.
MR 1344520
[4] R. A. Gordon:
The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics Vol. 4. AMS, Providence, 1994.
MR 1288751
[5] J. Jarník and J. Kurzweil:
Perron-type integration on $n$-dimensional intervals and its properties. Czechoslovak Math. J. 45 (1995), 79–106.
MR 1314532
[6] W. B. Jurkat and R. W. Knizia:
A characterization of multi-dimensional Perron integrals and the fundamental theorem. Canad. J. Math. 43 (1991), 526–539.
DOI 10.4153/CJM-1991-032-8 |
MR 1118008
[7] J. Kurzweil and J. Jarník:
Equiintegrability and controlled convergence of Perron-type integrable functions. Real Anal. Exchange 17 (1991/92), 110–139.
MR 1147361
[8] J. Kurzweil and J. Jarník:
Differentability and integrability in $n$ dimensions with respect to $\alpha $-regular intervals. Results Math. 21 (1992), 138–151.
DOI 10.1007/BF03323075 |
MR 1146639
[9] Lee Peng Yee and Ng Wee Leng:
The Radon-Nikodým theorem for the Henstock integral in Euclidean space. Real Anal. Exchange 22 (1996/97), 677–687.
MR 1460980
[10] Lee Peng Yee and Rudolf Výborný:
The integral, an easy approach after Kurzweil and Henstock. Australian Mathematical Society Lecture Series 14, Cambridge University Press, Cambridge, 2000.
MR 1756319
[11] Lee Tuo Yeong, Chew Tuan Seng and Lee Peng Yee:
On Henstock integrability in Euclidean spaces. Real Anal. Exchange 22 (1996/97), 382–389.
MR 1433623
[12] Lee Tuo Yeong:
A full characterization of multipliers for the strong $\rho $-integral in the Euclidean space. Czechoslovak Math. J. 54 (2004), 657–674.
DOI 10.1007/s10587-004-6415-7 |
MR 2086723
[13] Lee Tuo Yeong:
The sharp Riesz-type definition for the Henstock-Kurzweil integral. Real Anal. Exchange 28 (2002/2003), 55–70.
MR 1973968
[14] Lee Tuo Yeong:
A full descriptive definition of the Henstock-Kurzweil integral in the Euclidean space. Proc. London Math. Soc. 87 (2003), 677–700.
MR 2005879 |
Zbl 1047.26006
[15] Lee Tuo Yeong:
Some full characterizations of the strong McShane integral. Math. Bohem. 129 (2004), 305–312.
MR 2092716 |
Zbl 1080.26006
[17] S. Saks:
Theory of the Integral, 2nd edition. Stechert & Co., New York, 1964.
MR 0167578