Previous |  Up |  Next

Article

References:
[1] G. Da Prato, L. Lunardi: Stabilizability of integrodifferential parabolic equations. J. Integral Equations 2 (1990), 2, 281-304. MR 1045774 | Zbl 0697.45007
[2] G. Di Blasio K. Kunisch, E. Sinestrari: $L^2$-regularity for parabolic partial integrodifferential equations with delay in the highest-order derivative. J. Math. Anal. Appl. 102 (1984), 38-57. MR 0751340
[3] J. S. Gibson: The Riccati integral equations for optimal control problems on Hilbert spaces. SIAM J. Control Optim. 17 (1979), 4, 537-565. MR 0534423 | Zbl 0411.93014
[4] J. M. Jeong: Stabilizability of retarded functional differential equation in Hilbert space. Osaka J. Math. 28 (1991), 347-365. MR 1132170 | Zbl 0755.34081
[5] J. M. Jeong: Retarded functional differential equations with $L^1$-valued controller. Funkcial. Ekvac. 36 (1993), 71-93. MR 1232080
[6] J. L. Lions: Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag, Berlin--New York 1971. MR 0271512 | Zbl 0203.09001
[7] S. Nakagiri: Structural properties of functional differential equations in Banach spaces. Osaka J. Math. 25 (1988), 353-398. MR 0957869 | Zbl 0713.34069
[8] S. Nakagiri: Optimal control of linear retarded systems in Banach space. J. Math. Anal. Appl. 120 (1986), 169-210. MR 0861914
[9] T. Suzuki, M. Yamamoto: Observability, controllability, and feedback stabilizability for evolution equations I. Japan J. Appl. Math. 2 (1985), 211-228. MR 0839326 | Zbl 0593.93028
[10] H. Tanabe: Equations of Evolution. Pitman, London 1979. MR 0533824 | Zbl 0417.35003
[11] H. Tanabe: Fundamental solution of differential equation with time delay in Banach space. Funkcial. Ekvac. 35 (1992), 149-177 MR 1172427
Partner of
EuDML logo