Previous |  Up |  Next

Article

References:
[1] Y. G. Evtushenko: Automatic differentiation viewed from optimal control theory. In: Automatic Differentiation of Algorithms: Theory, Implementation, and Application (A. Griewank and G. F. Corliss, eds.), SIAM, Philadelphia 1991, pp. 25-30. MR 1143787 | Zbl 0782.65022
[2] R. Fletcher, C. Xu: Hybrid methods for nonlinear least squares. IMA J. Numer. Anal. 7 (1987), 371-389. MR 0968531 | Zbl 0648.65051
[3] E. Harier S. P. Norsett, G. Wanner: Solving Ordinary Differential Equations I, Nonstiff Problems. Springer Verlag, Berlin 1987. MR 0868663
[4] P. Hartman: Ordinary Differential Equations. John Wiley \& Sons, New York 1964. MR 0171038 | Zbl 0125.32102
[5] A. Griewank: On automatic differentiation. In: Mathematical Programming: Recent Development and Application (M. Iri and K. Tanabe, eds.), Kluwer Academic Publishers, London 1989, pp. 83-108. MR 1114312 | Zbl 0696.65015
[6] L. Lukšan: Hybrid methods for large sparse nonlinear least squares. J. Optim. Theory Appl. 89 (1996), 575-595. MR 1393364
[7] M. J. D. Powell: Convergence properties of a class of minimization algorithms. In: Nonlinear Programming 2 (O. L. Mangasarian, R. R. Meyer and S. M. Robinson, eds.), Academic Press, London 1975, pp. 1-27. MR 0386270 | Zbl 0321.90045
[8] M. J. D. Powell: On the global convergence of trust region algorithms for unconstrained minimization. Math. Programming 29 (1984), 297-303. MR 0753758 | Zbl 0569.90069
Partner of
EuDML logo