Previous |  Up |  Next

Article

References:
[1] A. C. Antulas: A system-theoretic approach to the factorization theory of non-singular polynomial matrices. Internat. J. Systems Sci. 33 (1981), 6, 1005-1026. MR 0624168
[2] J. S. Chakrabarti, S. K. Mitra: An algorithm for multivariable polynomial factorization. In: Proc. IEEE Internat. Symp. Circ. Syst. 1977, pp. 678-683.
[3] G. E. Collins: Computer algebra of polynomials and functions. Amer. Math. Monthly 80 (1973), 725-755. MR 0323750
[4] D. E. Dudgeon: The existence of cepstra for 2-D polynomials. IEEE Trans. Acoust. Speech Signal Process. ASSP-23 (1975), 2, 242-243.
[5] M. P. Ekstrom, R. E. Twogood: Finite order, recursive models for 2-D random fields. In: Proc. of the 20th Hidwest Symp. Circ. Syst. 1977, pp. 188-189.
[6] M. P. Ekstrom, J. W. Woods: Spectral factorization. IEEE Trans. Acoust. Speech Signal Process. ASSP-24 (1976), 2, 115-128. MR 0398676
[7] R. Gorez: Matrix factorization. Chandrasekhar equations techniques in the design of linear quadratic optimal control systems. Internat. J. Systems Sci. 12 (1981), 8, 907-915. MR 0628077
[8] R. L. Graham D. E. Knuth, O. Patashnik: Concrete Mathematics, A Foundation for Computer Science. Addison-Wesley Publishing Company, New York 1994. MR 1397498
[9] T. Kaczorek: Two-Dimensional Linear Systems. Springer-Verlag, Berlin--Heidelberg 1985. MR 0870854 | Zbl 0593.93031
[10] D. E. Knuth: The Art of Computer Programming. Vol. 1: Fundamental algorithms. -- Vol. 2: Seminumerical Algorithms. -- Vol. 3: Electronic Digital Computers -- Programming. Addison-Wesley Publishing Company, London--Amsterdam--Ontario--Sydney 1981. MR 0378456
[11] N. E. Mastorakis: Multidimensional Polynomials. Ph.D. Thesis. National Technical University of Athens 1992. Zbl 0781.93048
[12] N. E. Mastorakis, E. Nikos: Algebra and Analysis of Multivariable Polynomials: General methods of multivariable polynomial factorization. Athens 1988. (In Greek).
[13] N. E. Mastorakis, N. J. Theodorou: 'Operators' method for $m$-D polynomials factorization. Found. Comput. Decision Sci. 15 (1990), 2-3, 159-172. MR 1114659
[14] N. E. Mastorakis S. G. Tzafestas, N. J. Theodorou: A simple multidimensional polynomial factorization method. In: IMACS-IFAC Internat. Symp. on Math. and Intelligent Models in System Simulation, Brussels 1990, VII.B.1-1.
[15] N. E. Mastorakis, N. J. Theodorou: State-space model factorization in $m$-dimensions. Application in stability. Foundation of Computing and Decision Sciences 17 (1992), 55-61. MR 1174151
[16] N. E. Mastorakis N. J. Theodorou, S. G. Tzafestas: Factorization of $m$-D polynomials into linear $m$-D factors. Internat. J. Systems Sci. 23 (1992), 11, 1805-1824. MR 1194285
[17] N. E. Mastorakis N. J. Theodorou, S. G. Tzafestas: A general factorization method for multivariable polynomial. Mult. Syst. and Sign. Process. 5 (1994), 151-178. MR 1279541
[18] N. E. Mastorakis S. G. Tzafestas, N. J. Theodorou: A reduction method for multivariable polynomial factorization. In: Conference SPRANN'94, IMACS-IEEE International Symposium, Lille 1994, pp. 59-64.
[19] N. E. Mastorakis S. G. Tzafestas, N. J. Theodorou: Multidimensional polynomial factorization through the root perturbation approach. Part I. Control Theory Adv. Technology 10 (1994), 4, 901-911. MR 1330954
[20] P. Misra, R. V. Patel: Simple factorizability of 2-D polynomials. In: Internat. Symp. Circ. Syst., New Orleans 1990, pp. 1207-1210.
[21] L. S. Shieh, N. Clahin: A computer-aided method for the factorization of matrix polynomials. Internat. J. Systems Sci. 12 (1981), 3, 305-323. MR 0610912
[22] N. J. Theodorou, S. C. Tzafestas: Factorizability conditions for multidimensional polynomials. IEEE Trans. Automat. Control AC-30 (1985), 7, 697-700. MR 0790261 | Zbl 0563.12019
[23] S. G. Tzafestas (ed.): Multidimensional Systems. Techniques and Applications. Marcel Dekker, New York 1986. Zbl 0624.00025
[24] P. W. Wang, L. P. Rotchild: Factorizing over the integers. Comput. Math. 30 (1975), 324-336.
Partner of
EuDML logo