[1] Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.:
Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci., 25, pp. 1663–1763, 2015.
DOI 10.1142/S021820251550044X |
MR 3351175
[2] Cao, X.:
Global bounded solutions of the higher-dimensional Keller–Segel system under smallness conditions in optimal spaces. Discrete Contin. Dyn. Syst., 35, pp. 1891–1904, 2015.
DOI 10.3934/dcds.2015.35.1891 |
MR 3294230
[4] Fujie, K.: Study of reaction-diffusion systems modeling chemotaxis. PhD thesis, Tokyo University of Science, 2016.
[5] Fujie, K., Senba, T.:
Global existence and boundedness of radial solutions to a two dimensional fully parabolic chemotaxis system with general sensitivity. Nonlinearity, 29, pp. 2417–2450, 2016.
DOI 10.1088/0951-7715/29/8/2417 |
MR 3538418
[6] Fujie, K., Senba, T.:
A sufficient condition of sensitivity functions for boundedness of solutions to a parabolic-parabolic chemotaxis system. preprint.
MR 3816648
[7] He, X., Zheng, S.:
Convergence rate estimates of solutions in a higher dimensional chemotaxis system with logistic source. J. Math. Anal. Appl., 436, pp. 970–982, 2016.
DOI 10.1016/j.jmaa.2015.12.058 |
MR 3446989
[9] Lankeit, J.:
A new approach toward boundedness in a two-dimensional parabolic chemotaxis system with singular sensitivity. Math. Methods Appl. Sci., 39, pp. 394–404, 2016.
DOI 10.1002/mma.3489 |
MR 3454184
[10] Lankeit, J., Winkler, M.:
A generalized solution concept for the Keller–Segel system with logarithmic sensitivity: global solvability for large nonradial data. NoDEA, Nonlinear Differ. Equ. Appl., 24, No. 4, Paper No. 49, 33 p., 2017.
DOI 10.1007/s00030-017-0472-8 |
MR 3674184
[11] Mizukami, M.:
Boundedness and asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity. Discrete Contin. Dyn. Syst. Ser. B, 22, pp. 2301–2319, 2017.
MR 3664704
[12] Mizukami, M.:
Improvement of conditions for asymptotic stability in a two-species chemotaxis competition model with signal-dependent sensitivity. submitted, arXiv:1706.04774[math.AP].
MR 3664704
[13] Mizukami, M., Yokota, T.:
Global existence and asymptotic stability of solutions to a two-species chemotaxis system with any chemical diffusion. J. Differential Equations, 261, pp. 2650–2669, 2016.
DOI 10.1016/j.jde.2016.05.008 |
MR 3507983
[14] Mizukami, M., Yokota, T.:
A unified method for boundedness in fully parabolic chemotaxis systems with signal-dependent sensitivity. Math. Nachr., to appear.
MR 3722501
[15] Nagai, T., Senba, T., Yoshida, K.:
Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis. Funkcial. Ekvac., 40, pp. 411–433, 1997.
MR 1610709
[16] Negreanu, M., Tello, J. I.:
On a two species chemotaxis model with slow chemical diffusion. SIAM J. Math. Anal., 46, pp. 3761–3781, 2014.
DOI 10.1137/140971853 |
MR 3277217
[17] Negreanu, M., Tello, J. I.:
Asymptotic stability of a two species chemotaxis system with non-diffusive chemoattractant. J. Differential Equations, 258, pp. 1592–1617, 2015.
DOI 10.1016/j.jde.2014.11.009 |
MR 3295594
[18] Winkler, M.:
Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differential Equations, 248, pp. 2889–2905, 2010.
DOI 10.1016/j.jde.2010.02.008 |
MR 2644137
[19] Winkler, M.:
Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening. J. Differential Equations, 257, pp. 1056–1077, 2014.
DOI 10.1016/j.jde.2014.04.023 |
MR 3210023
[20] Zhang, Q., Li, X.:
Global existence and asymptotic properties of the solution to a two-species chemotaxis system. J. Math. Anal. Appl., 418, pp. 47–63, 2014.
DOI 10.1016/j.jmaa.2014.03.084 |
MR 3198865