Previous |  Up |  Next

Article

MSC: 35B41, 35L05, 37L30
Keywords:
Strongly damped wave equation, unbounded domains, locally compact attractor, Kolmogorovs entropy.
Summary:
We establish an upper bound on the Kolmogorov’s entropy of the locally compact attractor for strongly damped wave equation posed in locally uniform spaces in subcritical case using the method of trajectories.
References:
[1] Belleri, V., Pata, V.: Attractors for semilinear strongly damped wave equations on $\Bbb R^3$. Discrete Contin. Dynam. Systems, 7 (2001), pp. 719–735. DOI 10.3934/dcds.2001.7.719 | MR 1849655
[2] Carvalho, A. N., Cholewa, J. W.: Attractors for strongly damped wave equations with critical nonlinearities. Pacific J. Math., 207 (2002), pp. 287–310. DOI 10.2140/pjm.2002.207.287 | MR 1972247
[3] Cholewa, J. W., Dlotko, T.: Strongly damped wave equation in uniform spaces. Nonlinear Anal., 64 (2006), pp. 174–187. DOI 10.1016/j.na.2005.06.021 | MR 2183836
[4] Conti, M., Pata, V., Squassina, M.: Strongly damped wave equations on $\Bbb R^3$ with critical nonlinearities. Commun. Appl. Anal., 9 (2005), pp. 161–176. MR 2168756
[5] Plinio, F. Di, Pata, V., Zelik, S.: On the strongly damped wave equation with memory. Indiana Univ. Math. J., 57 (2008), pp. 757–780. DOI 10.1512/iumj.2008.57.3266 | MR 2414334
[6] Ghidaglia, J.-M., Marzocchi, A.: Longtime behaviour of strongly damped wave equations, global attractors and their dimension. SIAM J. Math. Anal., 22 (1991), pp. 879–895. DOI 10.1137/0522057 | MR 1112054
[7] Grasselli, M., Pražák, D., Schimperna, G.: Attractors for nonlinear reaction-diffusion systems in unbounded domains via the method of short trajectories. J. Differential Equations, 249 (2010), pp. 2287–2315. DOI 10.1016/j.jde.2010.06.001 | MR 2718659
[8] Kalantarov, V., Zelik, S.: Finite-dimensional attractors for the quasi-linear strongly damped wave equation. J. Differential Equations, 247 (2009), pp. 1120–1155. DOI 10.1016/j.jde.2009.04.010 | MR 2531174
[9] Li, H., Zhou, S.: Kolmogorov ε-entropy of attractor for a non-autonomous strongly damped wave equation. Commun. Nonlinear Sci. Numer. Simul., 17 (2012), pp. 3579–3586. DOI 10.1016/j.cnsns.2012.01.025 | MR 2913994
[10] Michálek, M., Pražák, D., HASH(0x2ff9058), Slavík, J.: Semilinear damped wave equation in locally uniform spaces. Commun. Pure Appl. Anal., 16 (2017), pp. 1673–1695. DOI 10.3934/cpaa.2017080 | MR 3661796
[11] Pata, V., Squassina, M.: On the strongly damped wave equation. Comm. Math. Phys., 253 (2005), pp. 511–533. DOI 10.1007/s00220-004-1233-1 | MR 2116726
[12] Pražák, D.: On finite fractal dimension of the global attractor for the wave equation with nonlinear damping. J. Dynam. Differential Equations, 14 (2002), pp. 763–776. DOI 10.1023/A:1020756426088 | MR 1940102
[13] Roubíček, T.: Nonlinear partial differential equations with applications. Birkhäuser/Springer Basel AG, Basel, International Series of Numerical Mathematics 153 (2013). MR 3014456
[14] Savostianov, A.: Infinite energy solutions for critical wave equation with fractional damping in unbounded domains. Nonlinear Anal., 136 (2016), pp. 136–167. DOI 10.1016/j.na.2016.02.016 | MR 3474408
[15] Yang, M., Sun, C.: Dynamics of strongly damped wave equations in locally uniform spaces: attractors and asymptotic regularity. Trans. Amer. Math. Soc., 361 (2009), pp. 1069–1101. DOI 10.1090/S0002-9947-08-04680-1 | MR 2452835
[16] Yang, M., Sun, C.: Exponential attractors for the strongly damped wave equations. Nonlinear Anal. Real World Appl., 11 (2010), pp. 913–919. DOI 10.1016/j.nonrwa.2009.01.022 | MR 2571264
[17] Zelik, S. V.: The attractor for a nonlinear hyperbolic equation in the unbounded domain. Discrete Contin. Dynam. Systems, 7 (2001), pp. 593–641. DOI 10.3934/dcds.2001.7.593 | MR 1815770
Partner of
EuDML logo