[1] Beddington, J. R.:
Mutual interference between parasites or predators and its effect on searching efficiency. J. Animal Ecology, 44 (1975), pp. 331-340.
DOI 10.2307/3866
[2] Chueshov, I. D., Rezounenko, A. V.:
Finite-dimensional global attractors for parabolic nonlinear equations with state-dependent delay. Comm. Pure Appl. Anal., 14/5 (2015), pp. 1685-1704.
DOI 10.3934/cpaa.2015.14.1685 |
MR 3359540
[3] DeAngelis, D. L., Goldstein, R. A., O’Neill, R. V.:
A model for tropic interaction. Ecology, 56 (1975), pp.881–892.
DOI 10.2307/1936298
[4] Hale, J. K.:
Theory of Functional Differential Equations. Springer, Berlin- Heidelberg-New York, 1977.
MR 0508721
[5] Hartung, F., Krisztin, T., Walther, H.-O., Wu, J.:
Functional differential equations with state-dependent delays: Theory and applications. In: Canada, A., Drábek, P. and A. Fonda (Eds.) Handbook of Differential Equations, Ordinary Differential Equations, Elsevier Science B.V., North Holland, 3 (2006), pp. 435–545.
MR 2457636
[6] Hews, S., Eikenberry, S., Nagy, J.D.:
Rich dynamics of a hepatitis B viral infection model with logistic hepatocyte growth. J. Math. Biology, Volume 60, Issue 4, (2010), pp. 573-590.
DOI 10.1007/s00285-009-0278-3 |
MR 2587590
[8] Kuang, Y.:
Delay Differential Equations with Applications in Population Dynamics. Mathematics in Science and Engineering, 191. Academic Press, Inc., Boston, MA, 1993.
MR 1218880
[9] Lyapunov, A. M.:
The General Problem of the Stability of Motion. Kharkov Mathematical Society, Kharkov, 1892, 251p.
MR 1229075
[10] Martin, R. H., Jr., Smith, H. L.:
Abstract functional-differential equations and reaction-diffusion systems. Trans. Amer. Math. Soc., 321 (1990), pp. 1-44.
MR 0967316
[11] McCluskey, C., Yang, Yu.:
Global stability of a diffusive virus dynamics model with general incidence function and time delay. Nonlinear Anal. Real World Appl., 25 (2015), pp. 64-78.
DOI 10.1016/j.nonrwa.2015.03.002 |
MR 3351011
[13] Pazy, A.:
Semigroups of linear operators and applications to partial differential equations. Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983. viii+279 pp.
MR 0710486
[14] Perelson, A., Neumann, A., Markowitz, M., Leonard, J., Ho, D.:
HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time. Science, 271 (1996), pp. 1582-1586.
DOI 10.1126/science.271.5255.1582
[15] Rezounenko, A. V.:
Partial differential equations with discrete and distributed state-dependent delays. J. Math. Anal. Appl., 326 (2007), pp. 1031-1045.
DOI 10.1016/j.jmaa.2006.03.049 |
MR 2280961
[16] Rezounenko, A. V.:
Differential equations with discrete state-dependent delay: Uniqueness and well-posedness in the space of continuous functions. Nonlinear Analysis: Theory, Methods and Applications, 70 (2009), pp. 3978-3986.
DOI 10.1016/j.na.2008.08.006 |
MR 2515314
[17] Rezounenko, A. V.:
Non-linear partial differential equations with discrete state-dependent delays in a metric space. Nonlinear Analysis: Theory, Methods and Applications, 73 (2010), pp. 1707-1714.
DOI 10.1016/j.na.2010.05.005 |
MR 2661353
[19] Rezounenko, A. V., Zagalak, P.:
Non-local PDEs with discrete state-dependent delays: wellposedness in a metric space. Discrete and Continuous Dynamical Systems - Series A, 33:2(2013), pp. 819-835.
MR 2975136
[20] Rezounenko, A. V.:
Stability of a viral infection model with state-dependent delay, CTL and antibody immune responses. Discrete and Continuous Dynamical Systems - Series B, Vol. 22 (2017), pp. 1547-1563; Preprint arXiv:1603.06281v1 [math.DS], 20 March 2016, arxiv.org/abs/1603.06281v1.
MR 3639177
[21] Rezounenko, A. V.:
Continuous solutions to a viral infection model with general incidence rate, discrete state-dependent delay, CTL and antibody immune responses. Electron. J. Qual. Theory Differ. Equ., 79 (2016), pp. 1-15.
DOI 10.14232/ejqtde.2016.1.79 |
MR 3547455
[22] Rezounenko, A. V.:
Viral infection model with diffusion and state-dependent delay: stability of classical solutions. Discrete and Continuous Dynamical Systems - Series B, Vol. 23, No. 3, May 2018, to appear; Preprint arXiv:1706.08620 [math.DS], 26 Jun 2017, arxiv.org/abs/1706.08620.
MR 3810110
[23] Smith, H. L.:
Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems. Mathematical Surveys and Monographs, 41. American Mathematical Society, Providence, RI, 1995.
MR 1319817
[24] Smith, H.:
An Introduction to Delay Differential Equations with Sciences Applications to the Life. Texts in Applied Mathematics, vol. 57, Springer, New York, Dordrecht, Heidelberg, London, 2011.
DOI 10.1007/978-1-4419-7646-8 |
MR 2724792
[25] Organization, World Health: Global hepatitis report-2017. April 2017, ISBN: 978-92-4156545-5; apps.who.int/iris/bitstream/10665/255016/1/9789241565455-eng.pdf?ua=1