Previous |  Up |  Next

Article

Keywords:
partial sums; analytic functions; generalized error function
Summary:
The purpose of the present paper is to determine lower bounds for $\mathfrak{R}\left\rbrace \frac{\mathcal{E}_{k}f(z)}{(\mathcal{E}_{k}f)_{m}(z)}\right\lbrace $, $\mathfrak{R}\left\rbrace \frac{(\mathcal{E}_{k}f)_{m}(z)}{\mathcal{E}_{k}f(z)}\right\lbrace , \mathfrak{R}\left\rbrace \frac{\mathcal{E}_{k}^{\prime }f(z)}{(\mathcal{E}_{k}f)_{m}^{\prime }(z)}\right\lbrace $ and $\mathfrak{R}\left\rbrace \frac{(\mathcal{E}_{k}f)_{m}^{\prime }(z)}{\mathcal{E}_{k}^{\prime }f(z)}\right\lbrace $, where $\mathcal{E}_{k}f$ is the generalized normalized error function of the form $\mathcal{E}_{k}f\left( z\right) =z+\sum _{n=2}^{\infty }\frac{\left( -1\right) ^{n-1}}{(\left( n-1\right) k+1)\left( n-1\right) !}z^{n}$ and $(\mathcal{E}_{k}f)_{m}$ its partial sum. Furthermore, we give lower bounds for $\mathfrak{R}\left\rbrace \frac{\mathbb{I}\left[ \mathcal{E}_{k}f\right] (z)}{(\mathbb{I}\left[ \mathcal{E}_{k}f\right] )_{m}(z)}\right\lbrace $ and $\mathfrak{R}\left\rbrace \frac{(\mathbb{I}\left[ \mathcal{E}_{k}f\right] )_{m}(z)}{\mathbb{I}\left[ \mathcal{E}_{k}f\right] (z)}\right\lbrace $, where $\mathbb{I}\left[ \mathcal{E}_{k}f\right] $ is the Alexander transform of $\mathcal{E}_{k}f$. Several examples of the main results are also considered.
References:
[1] Abramowitz, M., Stegun, I.A.: Handbook of Mathematical functions with formulas, Graphs and Matematical Tables. Dorer Publications Inc., New York, 1965. MR 0415956
[2] Aktaş, İ.: On partial sums of normalized error functions. GÜFBED/GUSTIJ 9 (3) (2019), 501–504.
[3] Aktaş, İ., Orhan, H.: Partial sums of normalized Dini functions. J. Class. Anal. 9 (2) (2016), 127–135. DOI 10.7153/jca-09-13 | MR 3588361
[4] Alexander, J.W.: Functions which map the interior of the unit circle upon simple regions. Ann. of Math. 17 (1915), 12–22. DOI 10.2307/2007212 | MR 1503516
[5] Alzer, H.: Error functions inequalities. Adv. Comput. Math. 33 (2010), 349–379. DOI 10.1007/s10444-009-9139-2 | MR 2718103
[6] C. Ramachandran, L. Vanitha, Kanas, S.: Certain results on $q$-starlike and $q$-convex error functions. Math. Slovaca 68 (2018), 361–368. DOI 10.1515/ms-2017-0107 | MR 3783390
[7] Coman, D.: The radius of starlikeness for error function. Stud. Univ. Babes-Bolyai Math. 36 (1991), 13–16. MR 1280904
[8] Din, M., Raza, M., Yagmur, N., Malik, S.N.: On partial sums of Wright functions. U.P.B. Sci. Bull., Series A 80 (2) (2018), 79–90. MR 3819389
[9] Elbert, A., Laforgia, A.: The zeros of the complementary error function. Numer. Algorithms 49 (2008), 153–157. DOI 10.1007/s11075-008-9186-7 | MR 2457095
[10] Frasin, B.A.: Partial sums of certain analytic and univalent functions. Acta Mathematica Academiae Paedagogicae Nyí regyháziensis 21 (2) (2005), 135–145. MR 2162609
[11] Frasin, B.A.: Generalization of partial sums of certain analytic and univalent functions. Appl. Math. Lett. 21 (2008), 135–741. DOI 10.1016/j.aml.2007.08.002 | MR 2423054
[12] Frasin, B.A., Cotîrlă, L.-I.: Partial sums of the normalized Le Roy-Type Mittag-Leffler function. Axioms (2075-1680). 12 (5) (2023), 12 p. DOI 10.3390/axioms12050441
[13] Frasin, B.A, Murugusundaramoorthy, G.: Partial sum of certain analytic functions. Mathematica 5 3 (76) (2011), 131–142. MR 2933022
[14] Goodman, A.W.: Univalent Functions. Vol. I. Mariner Publishing Company, Inc., Tampa, FL, 1983. MR 0704184
[15] Kazımoğlu, S.: Partial sums of the Miller-Ross function. Turkish J. Sci. 6 (3) (2021), 167–173.
[16] Lin, L.J., Owa, S.: On partial sums of the Libera integral operator. J. Math. Anal. Appl. 213 (2) (1997), 444–454. DOI 10.1006/jmaa.1997.5549 | MR 1470862
[17] Mohammed, N.H., Cho, N.E., Adegani, E.A., Bulboaca, T.: Geometric properties of normalized imaginary error function. Stud. Univ. Babeş-Bolyai Math. 67 (2) (2022), 455–462. DOI 10.24193/subbmath.2022.2.19 | MR 4438586
[18] Orhan, H., Gunes, E.: Neighborhoods and partial sums of analytic functions based on Gaussian hypergeometric functions. Indian J. Math. 51 (3) (2009), 489–510. MR 2573800
[19] Owa, S., Srivastava, H.M., Saito, N.: Partial sums of certain classes of analytic functions. Int. J. Comput. Math. 81 (10) (2004), 1239–1256. DOI 10.1080/00207160412331284042 | MR 2173456
[20] Sheil-Small, T.: A note on the partial sums of convex schlicht functions. Bull. London Math. Soc. 2 (1970), 165–168. DOI 10.1112/blms/2.2.165 | MR 0265576
[21] Silverman, H.: Partial sums of starlike and convex functions. J. Math. Anal. Appl. 209 (1997), 221–227. DOI 10.1006/jmaa.1997.5361 | MR 1444523 | Zbl 0894.30010
[22] Silvia, E.M.: On partial sums of convex functions of order $\alpha $. Houston J. Math. 11 (1985), 397–404. MR 0808655
[23] Yağmur, N., Orhan, H.: Partial sums of generalized Struve functions. Miskolc Math. Notes 17 (1) (2016), 657–670. DOI 10.18514/MMN.2016.1419 | MR 3527910
Partner of
EuDML logo