Previous |  Up |  Next

Article

Keywords:
analytic functions; bi-univalent functions; alpha-convex functions; coefficient bounds; Fekete-Szegö inequality; $q$-derivative; subordination
Summary:
The present investigation deals with a new subclass of alpha-convex bi-univalent functions in the unit disc $E=\left\rbrace z\colon \mid z \mid <1\right\lbrace $ defined with $q$-derivative operator. Bounds for the first two coefficients and Fekete-Szegö inequality are established for this class. Many known results follow as consequences of the results derived here.
References:
[1] Aldweby, H., Darus, M.: On a subclass of bi-univalent functions associated with $q$-derivative operator. J. Math. Computer Sci. 19 (2019), 58–64. DOI 10.22436/jmcs.019.01.08
[2] Amourah, A., Frasin, B.A., Al-Hawary, T.: Coefficient estimates for a subclass of bi-univalent functions associated with symmetric $q$-derivative operator by means of the Gegenbauer polynomials. Kyungpook Math. J. 62 (2) (2022), 257–269. MR 4448623
[3] Amourah, A., Frasin, B.A., Seoudy, T.M.: An application of Miller-Ross type Poisson distribution on certain subclasses of bi-univalent functions subordinate to Gegenbauer polynomials. Mathematics 10 (2022), 10 pp., 2462. DOI 10.3390/math10142462 | MR 4345706
[4] Aouf, M.K.: On a class of $p$-valent starlike functions of order $\alpha $. Int. J. Math. Math. Sci. 10 (4) (1987), 733–744. DOI 10.1155/S0161171287000838 | MR 0907789
[5] Brannan, D.A., Taha, T.S.: On some classes of bi-univalent functions. Mathematical Analysis and its Applications (Mazhar, S.M., Hamoni, A., Faour, N.S., eds.), KFAS Proceedings Series, vol. 3, Kuwait; February 18-21, 1985, Pergamon Press, Elsevier Science Limited, Oxford, 1988, See also Studia Univ. Babes-Bolyai Math., 1986, 31(2): 70-77, pp. 53–60. MR 0951657
[6] Bulut, S.: Certain subclasses of analytic and bi-univalent functions involving the $q$-derivative operator. Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat. 66 (1) (2017), 108–114. DOI 10.1501/Commua1_0000000780 | MR 3611862
[7] Duren, P.L.: Univalent Functions. Grundlehren der Mathematishen Wissenschaften, Springer, New York, 1983. MR 0708494 | Zbl 0514.30001
[8] Frasin, B.A.: Subordination results for a class of analytic functions defined by a linear operator. J. Inequ. Pure Appl. Math. 7 (4) (2006), 7 pp., Article 134. MR 2268588
[9] Frasin, B.A., Aouf, M.K.: New subclasses of bi-univalent functions. Appl. Math. Lett. 24 (2011), 1569–1573. DOI 10.1016/j.aml.2011.03.048 | MR 2803711
[10] Jackson, F.H.: On $q$-functions and a certain difference operator. Trans. Royal Soc. Edinburgh 46 (1908), 253–281. DOI 10.1017/S0080456800002751
[11] Jackson, F.H.: On $q$-definite integrals. Quarterly J. Pure Appl. Math. 41 (1910), 193–203.
[12] Janowski, W.: Some extremal problems for certain families of analytic functions. Ann. Pol. Math. 28 (1973), 297–326. DOI 10.4064/ap-28-3-297-326 | MR 0328059
[13] Lewin, M.: On a coefficient problem for bi-univalent functions. Proc. Amer. Math. Soc. 18 (1967), 63–68. DOI 10.1090/S0002-9939-1967-0206255-1 | MR 0206255
[14] Li, X.F., Wang, A.P.: Two new subclasses of bi-univalent functions. Int. Math. Forum 7 (30) (2012), 1495–1504. MR 2967369
[15] Madian, S.M.: Some properties for certain class of bi-univalent functions defined by $q$-Catas operator with bounded boundary rotation. AIMS Math. 7 (1) (2021), 903–914. DOI 10.3934/math.2022053 | MR 4332416
[16] Magesh, N.: Differential sandwich results for certain subclasses of analytic functions. Math. Comp. Modelling 54 (1–2) (2011), 803–814. DOI 10.1016/j.mcm.2011.03.028 | MR 2801933
[17] Mocanu, P.T.: Une propriete de convexite géenéralisée dans la théorie de la représentation conforme. Mathematica (CLUJ) 11 (34) (1969), 127–133. MR 0273000
[18] Páll-Szabó, A.O., Oros, G.I.: Coefficient related studies for new classes of bi-univalent functions. Mathematics 8 (2020), 1110. DOI 10.3390/math8071110
[19] Polatoglu, Y., Bolkal, M., Sen, A., Yavuz, E.: A study on the generalization of Janowski function in the unit disc. Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. 22 (2006), 27–31. MR 2216764
[20] Rahmatan, H., Shokri, A., Ahmad, H., Botmart, T.: Subordination method for the estimation of certain subclass of analytic functions defined by the $q$-derivative operator. J. Funct. Spaces, 9 pages, Article Id. 5078060. MR 4429892
[21] Seoudy, T.M., Aouf, M.K.: Coefficient estimates of new classes of $q$-starlike and $q$-convex functions of complex order. J. Math. Inequal. 10 (2016), 135–145. DOI 10.7153/jmi-10-11 | MR 3455309
[22] Singh, Gagandeep: Coefficient estimates for bi-univalent functions with respect to symmetric points. J. Nonlinear Funct. Anal. 1 (2013), 1–9.
[23] Singh, Gurmeet, Singh, Gagandeep, Singh, Gurcharanjit: Certain subclasses of Sakaguchi-type bi-univalent functions. Ganita 69 (2) (2019), 45–55. MR 4060858
[24] Singh, Gurmeet, Singh, Gagandeep, Singh, Gurcharanjit: A generalized subclass of alpha-convex bi-univalent functions of complex order. Jnanabha 50 (1) (2020), 65–71. DOI 10.58250/jnanabha.2020.50108 | MR 3962610
[25] Singh, Gurmeet, Singh, Gagandeep, Singh, Gurcharanjit: Certain subclasses of univalent and bi-univalent functions related to shell-like curves connected with Fibonacci numbers. General Mathematics 28 (1) (2020), 125–140. DOI 10.2478/gm-2020-0010 | MR 3962610
[26] Sivapalan, J., Magesh, N., Murthy, S.: Coefficient estimates for bi-univalent functions with respect to symmetric conjugate points associated with Horadam Polynomials. Malaya J. Mat. 8 (2) (2020), 565–569. DOI 10.26637/MJM0802/0042 | MR 4112566
[27] Srivastava, H.M., Mishra, A.K., Gochhayat, P.: Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 25 (2012), 990–994. DOI 10.1016/j.aml.2011.11.013 | MR 2902367
[28] Srivastava, H.M., Sümer, S.: Some applications of a subordination theorem for a class of analytic functions. Appl. Math. Lett. 21 (4) (2008), 394–399. DOI 10.1016/j.aml.2007.02.032 | MR 2406520
[29] Toklu, E.: A new subclass of bi-univalent functions defined by $q$-derivative. TWMS J. App. Engg. Math. 9 (2019), 84–90.
[30] Venkatesan, M., Kaliappan, V.: New subclasses of bi-univalent functions associated with $q$-calculus operator. Int. J. Nonlinear Anal. Appl. 13 (2) (2022), 2141–2149.
Partner of
EuDML logo