Previous |  Up |  Next

Article

Title: Some lower bounds for the quotients of normalized error function and their partial sums (English)
Author: Frasin, Basem Aref
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 61
Issue: 2
Year: 2025
Pages: 73-83
Summary lang: English
.
Category: math
.
Summary: The purpose of the present paper is to determine lower bounds for $\mathfrak{R}\left\rbrace \frac{\mathcal{E}_{k}f(z)}{(\mathcal{E}_{k}f)_{m}(z)}\right\lbrace $, $\mathfrak{R}\left\rbrace \frac{(\mathcal{E}_{k}f)_{m}(z)}{\mathcal{E}_{k}f(z)}\right\lbrace , \mathfrak{R}\left\rbrace \frac{\mathcal{E}_{k}^{\prime }f(z)}{(\mathcal{E}_{k}f)_{m}^{\prime }(z)}\right\lbrace $ and $\mathfrak{R}\left\rbrace \frac{(\mathcal{E}_{k}f)_{m}^{\prime }(z)}{\mathcal{E}_{k}^{\prime }f(z)}\right\lbrace $, where $\mathcal{E}_{k}f$ is the generalized normalized error function of the form $\mathcal{E}_{k}f\left( z\right) =z+\sum _{n=2}^{\infty }\frac{\left( -1\right) ^{n-1}}{(\left( n-1\right) k+1)\left( n-1\right) !}z^{n}$ and $(\mathcal{E}_{k}f)_{m}$ its partial sum. Furthermore, we give lower bounds for $\mathfrak{R}\left\rbrace \frac{\mathbb{I}\left[ \mathcal{E}_{k}f\right] (z)}{(\mathbb{I}\left[ \mathcal{E}_{k}f\right] )_{m}(z)}\right\lbrace $ and $\mathfrak{R}\left\rbrace \frac{(\mathbb{I}\left[ \mathcal{E}_{k}f\right] )_{m}(z)}{\mathbb{I}\left[ \mathcal{E}_{k}f\right] (z)}\right\lbrace $, where $\mathbb{I}\left[ \mathcal{E}_{k}f\right] $ is the Alexander transform of $\mathcal{E}_{k}f$. Several examples of the main results are also considered. (English)
Keyword: partial sums
Keyword: analytic functions
Keyword: generalized error function
MSC: 30C45
DOI: 10.5817/AM2025-2-73
.
Date available: 2025-07-01T07:31:13Z
Last updated: 2025-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/153019
.
Reference: [1] Abramowitz, M., Stegun, I.A.: Handbook of Mathematical functions with formulas, Graphs and Matematical Tables.Dorer Publications Inc., New York, 1965. MR 0415956
Reference: [2] Aktaş, İ.: On partial sums of normalized error functions.GÜFBED/GUSTIJ 9 (3) (2019), 501–504.
Reference: [3] Aktaş, İ., Orhan, H.: Partial sums of normalized Dini functions.J. Class. Anal. 9 (2) (2016), 127–135. MR 3588361, 10.7153/jca-09-13
Reference: [4] Alexander, J.W.: Functions which map the interior of the unit circle upon simple regions.Ann. of Math. 17 (1915), 12–22. MR 1503516, 10.2307/2007212
Reference: [5] Alzer, H.: Error functions inequalities.Adv. Comput. Math. 33 (2010), 349–379. MR 2718103, 10.1007/s10444-009-9139-2
Reference: [6] C. Ramachandran, L. Vanitha, Kanas, S.: Certain results on $q$-starlike and $q$-convex error functions.Math. Slovaca 68 (2018), 361–368. MR 3783390, 10.1515/ms-2017-0107
Reference: [7] Coman, D.: The radius of starlikeness for error function.Stud. Univ. Babes-Bolyai Math. 36 (1991), 13–16. MR 1280904
Reference: [8] Din, M., Raza, M., Yagmur, N., Malik, S.N.: On partial sums of Wright functions.U.P.B. Sci. Bull., Series A 80 (2) (2018), 79–90. MR 3819389
Reference: [9] Elbert, A., Laforgia, A.: The zeros of the complementary error function.Numer. Algorithms 49 (2008), 153–157. MR 2457095, 10.1007/s11075-008-9186-7
Reference: [10] Frasin, B.A.: Partial sums of certain analytic and univalent functions,.Acta Mathematica Academiae Paedagogicae Nyí regyháziensis 21 (2) (2005), 135–145. MR 2162609
Reference: [11] Frasin, B.A.: Generalization of partial sums of certain analytic and univalent functions.Appl. Math. Lett. 21 (2008), 135–741. MR 2423054, 10.1016/j.aml.2007.08.002
Reference: [12] Frasin, B.A., Cotîrlă, L.-I.: Partial sums of the normalized Le Roy-Type Mittag-Leffler function.Axioms (2075-1680). 12 (5) (2023), 12 p. 10.3390/axioms12050441
Reference: [13] Frasin, B.A, Murugusundaramoorthy, G.: Partial sum of certain analytic functions.Mathematica 5 3 (76) (2011), 131–142. MR 2933022
Reference: [14] Goodman, A.W.: Univalent Functions. Vol. I.Mariner Publishing Company, Inc., Tampa, FL, 1983. MR 0704184
Reference: [15] Kazımoğlu, S.: Partial sums of the Miller-Ross function.Turkish J. Sci. 6 (3) (2021), 167–173.
Reference: [16] Lin, L.J., Owa, S.: On partial sums of the Libera integral operator.J. Math. Anal. Appl. 213 (2) (1997), 444–454. MR 1470862, 10.1006/jmaa.1997.5549
Reference: [17] Mohammed, N.H., Cho, N.E., Adegani, E.A., Bulboaca, T.: Geometric properties of normalized imaginary error function.Stud. Univ. Babeş-Bolyai Math. 67 (2) (2022), 455–462. MR 4438586, 10.24193/subbmath.2022.2.19
Reference: [18] Orhan, H., Gunes, E.: Neighborhoods and partial sums of analytic functions based on Gaussian hypergeometric functions.Indian J. Math. 51 (3) (2009), 489–510. MR 2573800
Reference: [19] Owa, S., Srivastava, H.M., Saito, N.: Partial sums of certain classes of analytic functions.Int. J. Comput. Math. 81 (10) (2004), 1239–1256. MR 2173456, 10.1080/00207160412331284042
Reference: [20] Sheil-Small, T.: A note on the partial sums of convex schlicht functions.Bull. London Math. Soc. 2 (1970), 165–168. MR 0265576, 10.1112/blms/2.2.165
Reference: [21] Silverman, H.: Partial sums of starlike and convex functions.J. Math. Anal. Appl. 209 (1997), 221–227. Zbl 0894.30010, MR 1444523, 10.1006/jmaa.1997.5361
Reference: [22] Silvia, E.M.: On partial sums of convex functions of order $\alpha $.Houston J. Math. 11 (1985), 397–404. MR 0808655
Reference: [23] Yağmur, N., Orhan, H.: Partial sums of generalized Struve functions.Miskolc Math. Notes 17 (1) (2016), 657–670. MR 3527910, 10.18514/MMN.2016.1419
.

Files

Files Size Format View
ArchMathRetro_061-2025-2_2.pdf 484.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo